搜索资源列表
PS0
- nds roms pso补丁-nds roms pso patch
PS0-SVR
- :针对发酵过程中生物参数难以实时在线测量的问题,建立了用于生物参数状态预估的 支持向量机软测量模型。考虑到该支持向量回归(SVR)模型的复杂性和冷化特征取决于其三 个参数 ,c, 能否取到最优值,采用粒子群优化(PSO)算法实现对参数 ,c, 的同时寻优。在 此基础上,以饲料用 .甘露聚糖酶为对象,建立了基于PSO—SVR的发酵过程产物浓度状态预估 模型。发酵罐控制结果表明:该模型具有很好的学习精度和泛化能力,可实现对 .甘露聚糖酶 产物浓度的实时在线预估。-In
PS0-SVR
- 支持向量机是建立在统计学习理论基础上的通用学习方法,它可较好地解决以往 很多学习方法的小样本、非线性、过学习、高维数、局部极小点等实际问题。笔者利用支持向量回归理论 和方法,建立支持向量机的预测模型,并利用winSVM 和MATLAB 软件进行了实例预测,与二次回归 预测值相比较,支持向量机预测模型具有更好的预测精度,且有很强的推广能力。-Support vector regression data
PS0-TSP
- 多目标问题,粒子群优化算法,解决单旅行商问题-Multi-objective problem, particle swarm optimization algorithm to solve the traveling salesman problem alone