搜索资源列表
regu.rar
- ere we provide codes for a very powerful Lanczos based hybrid iterative method that can be used for large scale linear ill-posed inverse problems. The method will automatically choose [Tikhonov] regularization parameters, and automatically determ
svm-km.rar
- 支持向量机(SVM)是数据挖掘中的一个新方法,能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科。目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段。它广泛的应用于统计分类以及回归分析中. 支持向量机属于一般化线性分类器.他们也可以认为是提克洛夫规则化(Tikhonov Regularization)方法的一个特例.这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区
Tikhonov-Regularization-
- 本程序是基于Tikhonov正则化方法重建图像分析-This procedure is based on the Tikhonov regularization method for reconstruction of image analysis
LogisticR
- Logistic Loss with the L1-norm Regularization
L-curve
- L-曲线法是反问题正则化方法中的参数选取中的重要方法,本程序给出了如何恰当选取其中的参数!-L-curve method is the inverse problem regularization method of parameter selection in an important way, this procedure is given on how to properly select one of the parameters!
regu
- Regularization Tools: A MATLAB package for Analysis and Solution of Discrete Ill-Posed Problems. Version 4.1. By means of the routines in this package, the user can experiment with different regularization strategies. The package also includes
MaximumAPosteriori
- 在统计学中,最大后验(英文为Maximum a posteriori,缩写为MAP)估计方法根据经验数据获得对难以观察的量的点估计。它与最大似然估计中的 Fisher 方法有密切关系,但是它使用了一个增大的优化目标,这种方法将被估计量的先验分布融合到其中。所以最大后验估计可以看作是规则化(regularization)的最大似然估计。 -In statistics, the maximum a posteriori (English as a Maximum a posteriori, ab
super_resolution
- 用matlab仿真图像超分辨率重建技术中的正则化处理方法-Simulation using matlab image super-resolution reconstruction of the regularization approach
Optimization
- Comparison of the Iterative Stationary of 1st and 2nd order and CG methods on a Tikhonov regularization inverse problem: -Comparison of the Iterative Stationary of 1st and 2nd order and CG methods on a Tikhonov regularization inverse problem:
regularization
- regularization multilayer perceptron network
regularization
- radial basisi function
Regularizationtools
- Regularization Tools Version 4.1 (for Matlab Version 7.3)最新版,刚下了个3.2版,传个新版 -Regularization Tools Version 4.1 (for Matlab Version 7.3)
Tikhonov_Regularization_for_super_resolution
- 利用Tikhonov正则化实现的超分辨率图像序列的重建,效果还好-Use Tikhonov regularization to achieve super-resolution image sequence reconstruction, better results
ex_conv_1D_Tikhonov
- some example of regularization tools in matlab
ex_conv_2D_Tikhonov_Lcurve
- example of 2D tikhonov regularization tools
LeastR
- LeastR Least Squares Loss with the L1-norm Regularization-Least Squares Loss with the L1-norm Regularization
nnLeastR
- Least Squares Loss with the L1-norm Regularization subject to non-negative constraint
Regularization
- 病态方程的正则化,用matlab实现正则化算法。-Morbid equation, regularization, with the regularization algorithm matlab implementation.
tv_reg
- This MATLAB .m file takes a "true" image, and an "observed" image that is the true image that has been noised with uncorrelated Gaussian noise. The function then performs Tikhonov regularization to clean up the defects in the image, with the Tikhonov
Kernel-Adaptive-Filtering
- This book presents a comprehensive and unifying introduction to kernel adaptive fi ltering. Adaptive signal processing theory has been built on three pillars: the linear model, the mean square cost, and the adaptive least - square learning algo