搜索资源列表
Geometer.rar
- 线段及直线的基本运算 1. 点与线段的关系 2. 求点到线段所在直线垂线的垂足 3. 点到线段的最近点 4. 点到线段所在直线的距离 5. 点到折线集的最近距离 6. 判断圆是否在多边形内 7. 求矢量夹角余弦 8. 求线段之间的夹角 9. 判断线段是否相交 10.判断线段是否相交但不交在端点处 11.求点关于某直线的对称点 12.判断两条直线是否相交及求直线交点 13.判断线段是否相交,
LineJd
- 求两条直线段的交点坐标的算法说明,是网上资料的经典积累-Seeking two coordinates of line segment intersection algorithm descr iption
8_73
- 输入两条直线信息(斜率和截距),用C++ 编成求出两条直线的交点-Enter two lines of information (slope and intercept), compiled with C++ calculate the intersection of two lines
Get_The_Intersection_of_Two_Lines
- 实现求任意两条直线的交点,并可以实时绘制出两条直线,采用两点确定一条直线的方式来实现。-Seeking to achieve any of the intersection of two lines and two lines drawn in real time, using two points determine a straight line approach to implementation.
bufengtouzhen
- 布冯投针 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。 现在设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。 由于圆圈和直线的长度同为πd,根据机会均等的原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数可望也是一样的。这就是说,
Geometry
- 包含了点的基本运算 1. 平面上两点之间距离 2. 判断两点是否重合 3. 矢量叉乘 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 3. 点到线段的最近点 4. 点到线段所在直线的距离 5. 点到折线集的最近距离 6. 判断圆是否在多边形内 5 7. 求
zhixianqiujiaodian
- 通过先绘制两条直线,然后通过两条直线求其交点-Find the intersection of two lines