搜索资源列表
-
0下载:
主要是KNN(the k-nearest neighbor algorithm ),LVQ1(learning vector quantization 1), DSM(decision surface mapping)算法。
and a simple clustering algorithm.
-
-
0下载:
source code for pattern classification k nearest neighbor source code
-
-
0下载:
KNN Classifier code and implementation with Visual Basic
-
-
0下载:
k NN algorithm nearest neighbor search
-
-
0下载:
K最邻近分类器设计的MATLAB代码,有代码解释-K nearest neighbor classifier design in MATLAB code
-
-
0下载:
k nearest neighbor clssifier
-
-
0下载:
the method of feature extraction using pca and k nearest neighbor for recognition
-
-
0下载:
Knn算法综述、柔性KNN算法研究、一个高效的knn分类算法法、一种改进的KNN分类算法、一种优化的K最近邻协同过滤算法。
-The Knn algorithm summarized flexible KNN algorithm, an efficient knn classification algorithm method, an improved KNN classification algorithm, an optimized K nearest neighbor collabor
-
-
0下载:
基于双低频小波变换和k近邻分类器的人脸识别算法源程序-Dual low frequency wavelet transform and k-nearest neighbor classifier based face recognition algorithm source
-
-
0下载:
对大量文件中相关内容的搜索,k近邻查询算法及一些改进-A large number of files in the search k nearest neighbor query algorithm and some improvements
-
-
0下载:
是K最邻近结点算法(k-Nearest Neighbor algorithm)的缩写形式,是电子信息分类器算法的一种。KNN方法对包容型数据的特征变量筛选尤其有效。-k-Nearest Neighbor algorithm, It is a very useful matlab code.
-
-
0下载:
Implementation of k nearest neighbor in c# which could be employed for classification
-
-
0下载:
Iris 是一种鸢尾属植物。在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。这里用K近邻法进行分类。-Iris is a genus Iris. In the data recording, the data containing each of the four attributes Iris Flower: sepals length, sepal width, petal length,
-
-
0下载:
本程序实现了最近邻分类器的K近邻算法。实现方式是使用matlab-This program implements a nearest neighbor classifier K-nearest neighbor algorithm. Implementation using matlab
-
-
0下载:
k 近邻算法采用测量不同特征值之间的距离的方法进行分类(K nearest neighbor algorithm uses the method of measuring the distance between different eigenvalues to classify)
-
-
2下载:
matlab用于计算K近邻互信息量程序,多变量相关性(K nearest neighbor mutual information computing program)
-
-
0下载:
#k-近邻算法 实现 KNN 分类算法
# 对未知类别属性的数据集中的每个点依次执行以下操作:
# (1)计算已知类别数据集中的点与当前点之间的距离
# (2)按照距离递增次序排序
# (3)选取与当前点距离最小的K个点
# (4)确定前K个点所在类别的出现频率
# (5)返回前K个点出现频率最高的类别作为当前点的预测分类(#k-Nearest Neighbor , KNN)
-
-
0下载:
k-nn算法 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归. 如果K = 1 , 那么新数据将被分配给其近邻的类.(k-nnK - NN algorithm (K on his Neighbor, K Nearest Neighbor algorithm), is a classical al
-
-
0下载:
调用于sklearn平台的K-Nearest Neighbor Classifier算法,有着较好的分类能力(The k-nearest Neighbor Classifier algorithm for sklearn platform has good classification ability.)
-
-
3下载:
利用matlab实现k-近邻点估计点云法向量求解,(Matlab is used to solve the normal vector of k-nearest neighbor point cloud.)
-