搜索资源列表
2008101802
- 动态树的创建解说及示例.zip 很好的例子-Dynamic tree create explanations and examples. Zip good example
zidongsaolei
- 扫雷程序*,真正的算法实现(非读内存方法),高级最快3~5秒,有具体的算法解释说明-Plug-in de-mining process, the real algorithm (non-memory methods of reading), Senior fastest 3 ~ 5 seconds, there are specific explanations of the algorithm
18688632
- 一个非常好的C#的数据库教程,里面包含了常用的数据库操作,以及最新的NHibernate、数据映射方案,本教程对C#数据库提供了一个更为深层次的讲解-A very good C# tutorial database, which contains a common database operations, and the latest NHibernate, data mapping program, the tutorial on the C# database provides a more
8Bruce_Eckel
- 《C#编程思想》本书是对C#编程的总体而细致的讲解,由易到难,比较全面-" C# Programming Thought" This book is the C# programming in general and detailed explanations, Youyidaonan, more comprehensive
CS2008Develop_Real_Kongfu
- C# 2008开发入行真功夫的书籍源代码,这本书很详细的讲解了c#由入门到精通的全过程,对我自己帮助很大,在这里也奉献给大家-C# 2008 line real skill development into the source code for the books, this book is very detailed explanations of the c# by the entry to the master of the whole process very helpful for
cSharpAPI
- CSharp API的讲解。Word文档,讲述详细,但需要一定的基础。适合初学者-CSharp API explanations. Word document, described in detail, but requires a certain foundation. Suitable for beginners
C_WinConslColourSoundPositin(byWenmay)
- C#语言的一些常用的方法,讲解,分析。 C#语言的一些常用的方法,讲解,分析。-C# language, some commonly used methods, explanations, analysis.
Cstudy
- C#初学者的很好资料,不要错过哦! 包括很多的实例及说明-C# beginner good information, do not miss it! Including many examples and explanations
gonglvpuguji
- 实现经典功率谱估计,带详细的解释包含不同函数下BT法,周期图法,Bartlett法和Welch法,只含一个主文件,清晰易懂-Classic power spectral estimation, containing only a master file contains different functions under the BT method, periodogram, Bartlett law and Welch method, with detailed explanations, c
LibraryMS
- 强大的查询功能,保证数据查询的灵活性。实现对图书借阅和归还过程的全程数据信息跟踪。提供图书借阅排行榜,为图书馆管理员提供了真实的数据信息。提供灵活、方便的权限设置功能,使整个系统的管理分工明确。 编译通过,系统可正确完整运行,令附使用说明及讲解- powerful query capabilities, to ensure that data query flexibility. Realize the tracking to borrow and return books
accord-hmm-source
- Hidden Markov Models in C#-Introduction Hidden Markov Models were first described in a series of statistical papers by Leonard E. Baum and other authors in the second half of the 1960s. One of the first applications of HMMs was speech recognition,