搜索资源列表
7_Rsa
- RSA公钥加密算法基于大整数因式分解困难这样的事实。 选择两个素数,p,q。(一般p,q选择很大的数) 然后计算 z=p*q f=(p-1)(q-1) 选择一个n,使gcd(n,f)=1(gcd代表greatest common divider,一般n也选择一个素数), n和z就作为公钥。 选择一个s,0<s<f,满足n*s % f=1,s就作为私钥。-RSA public key encryption algorithm based on the integer fa
BigInteger_src
- C# BigInteger class. BigInteger.cs is a csharp program. It is the BIgInteger class. It has methods: abs() , FermatLittleTest(int confidence) ,gcd(BigInteger bi) , genCoPrime(int bits, Random rand) , genPseudoPrime(int bits, int confidence, Random ran
gudianmima
- 古典密码中,主要的思想为移位算法及置换算法。 1.移位密码 密钥K为整数,且取值空间为0到25;加密函数:x = x + k (mod 26);解密函数:x = x - k (mod 26)。当K=3时,为凯撒密码。 2.仿射密码 密钥对由a、b组成,整数a满足 gcd(a, 26) = 1,整数b的取值空间为0到25;加密函数:x = ax + b(mod 26);解密函数:x = a*y - a*b (mod 26)。当a=1,b=3时,为凯撒密码。 3.维吉
GCD
- 求sa和tb的和使等于a和b的最大公约数-For sa and tb, and so equal to a and b of the common denominator
recurs
- /* Divide and Conquer */ /* Find minimum and maximum from a given series of numbers */ /* by using above said policy */ gcd fibonacci-/* Divide and Conquer*/ /* Find minimum and maximum from a given series of numbers*/ /* by using
BasicRSA_latest.tar
- RSA ( Rivest Shamir Adleman )is crypthograph system that used to give a secret information and digital signature . Its security based on Integer Factorization Problem (IFP). RSA uses an asymetric key. RSA was created by Rivest, Shamir, and Adleman i
RSA
- RSA算法实验报告和代码 1.选取两个素数p,q(不可相差悬殊) 2.计算n=pq,f(n)=(p-1)(q-1) 3.选取e,满足1<e<f(n),则gcd(e,f(n))=1 4.计算d,满足de=1 mod f(n)。一般d>=[n的四分之一方],(e,n)为公钥,(p,q,d)为私钥,将明文0,1序列分组,使每组十进制小于n。c=[m的e次方] mod n,m=[c的d次方] mod n。-RSA algorithm and code an experi
gcd
- oujilide suanfa de kuozhansuanfade shxiamzj jdsa lfjdas f-Euclid suandafa a ldjfdkuodahznadnfa,dfna dsfjdas fjdas
gcd
- The greatest common divisor of integers x and y is the largest integer that evenly divides both x and y. Write a recursive function gcd that returns the greatest common divisor of x and y, define recursively as follows. It y is equal to 0, then gcd(x
rsa
- 1.问题描述 RSA密码系统可具体描述为:取两个大素数p和q,令n=pq,N=(p-1)(q-1),随机选择整数d,满足gcd(d,N)=1,ed=1 modN。 公开密钥:k1=(n,e) 私有密钥:k2=(p,q,d) 加密算法:对于待加密消息m,其对应的密文为c=E(m)=me(modn) 解密算法:D(c)=cd(modn) 2.基本要求 p,q,d,e参数选取合理,程序要求界面友好,自动化程度高。 4. 实现提示 要实现一个真实的RSA密码系统,主要考虑对大整数的处理。P