搜索资源列表
aaa
- 强大得ECLIPSE插件 -powerful Eclipse plug-in a p owerful Eclipse plug-in
encryptor_wrapper
- 用于智能卡的3DES的MAC和DMAC加密算法。-For smart cards 3DES encryption algorithm of the MAC and DMAC.
jj
- CORNACCHIA Algorithm * * GOAL: given d and p prime, find (x,y) such that x^2 + y^2 = d * p * * in this implementation, d = 1. This code does not accept d <> 1 !!! * see "A Course in Computational Algebraic Number Theory" by Henri
pollard
- Pollard p-1算法实现 Pollard 方法由Pollard于1974年提出,其基本想法是这样的:设素数,由Fermat小定理,又有,因此就可能是的一个非平凡因子。当然,问题在于我们并不知道是多少。一个合理的假设是的因子都很小,比如说,所有素因子都包含在因子基中,我们来尝试着找到一个能够“覆盖”,即是说,从而,因此我们可以转而求来获得所要的非平凡因子。例如设素因子上限为,便可以简单的取或是最小公倍数.-Pollard p-1 algorithm
Pcode
- matlab环境下,基于matlab的gps p码的源程序-P-code matlab-based GPS
456
- RSA算法的C语言实现 1.密钥的产生 (1)选两个安全的大素数p和q。 (2)计算n=p×q,φ(n)=(p-1)(q-1),其中φ(n)是n的欧拉函数值。 (3)选一整数e,满足1<e<φ(n),且gcd(φ(n),e)=1。 (4)计算d,满足de≡1 modφ(n),即d是e在模φ(n)下的乘法逆元,因e与φ(n)互素,由模运算可知,它的乘法逆元一定存在。 (5)以{e,n}为公开钥,{d,n}为秘密钥。 2.加密 加密时首先将明文M比特串分组
Elgamal
- ElGamal algorithm not only used for data encryption can be used for digital signatures, their safety depends on the calculation of a finite field discrete logarithm this problem. Key to the method. First of all, choose a prime number p, the two rando
MerkleHellman
- The encryption algorithm using Merkle-Hellman knapsacks starts with a binary message. * The message is envisioned as a binary sequence P = [p1, p2, … ,pk]. * Divide the message into blocks of m bits, Po = [P1, P2, ... ,Pm], P1 = [Pm+1, .
discrete_log
- Solve descrete log problem using meet in the middle attack. More formally, write a program to compute discrete log modulo a prime p. Let g be some element in Z p and suppose you are given h in Z p such that h = gx where 1 ≤ x ≤ 240. Your goal
diffie_hellman
- Implement Diffie-Hellman Key exchange protocol and demonstrate that at the end, both person will have a common Key. Do the following: 1. Set a variable p ( e.g. p = 37) and g (e.g. g = 5). 2. Generate a, a random number mod p. Now generate A,