搜索资源列表
newpnn
- 基于GMM的概率神经网络PNN具有良好的泛化能力,快速的学习能力,易于在线更新,并具有统计学的贝叶斯估计理论基础,已成为一种解决像说话人识别、文字识别、医疗图像识别、卫星云图识别等许多实际困难分类问题的很有效的工具。而且PNN不但具有GMM的大部分优点,还具有许多GMM没有的优点,如强鲁棒性,需要更少的训练语料,可以和其他网络其他理论无缝整合等。-GMM based probabilistic neural network PNN good generalization ability, the
T-REC-G.711-200911-I!Amd2!SOFT-ZST-E
- G.711使用64Kbps的带宽,可将14bits转换成8bits。目前G.711有两个编码方式,A-law以及Mu-law。-G.711 defines two main compression algorithms, the µ -law algorithm (used in North America & Japan) and A-law algorithm (used in Europe and the rest of the world). Both are logarith
T-REC-P.862.3-200711-I!!PDF-E
- SERIES P: TELEPHONE TRANSMISSION QUALITY, TELEPHONE INSTALLATIONS, LOCAL LINE NETWORKS - Methods for objective and subjective assessment of quality
T-REC-P.862-200303-S!Amd1!SOFT-ZST-E
- C SourceCode for SERIES P: TELEPHONE TRANSMISSION QUALITY, TELEPHONE INSTALLATIONS, LOCAL LINE NETWORKS - Methods for objective and subjective assessment of quality