搜索资源列表
tuxintuizhifenge
- 针对类圆形堆积物图像的前景和背景在色彩或灰度上相近,难以用传统阈值分割等算法进行有效分割的问题,提出一种多方法融 合的类圆形堆积物图像区域分割策略。对图像进行滤波等一系列预分割处理后进行投影得到目标图像的外接矩形区域,以排除噪声的干扰, 在区域内采用改进的灰度共生矩阵方法进行粗分割,以解决窗口大小与分割精度的问题,采用二维OTSU 阈值分割方法对粗分割结果进行 量化。实验结果表明,该方法得到的区域分割结果边缘清晰、准确度高。-Round deposits for the prospe
biye
- 基于投票算法的目标跟踪,基于二阶非线性投票的多目标跟踪算法。该算法通过目标匹配得到同一目标在不同帧中的位置,同时利用特征监测来处理目标的遮挡、分裂问题,并实现目标特征的实时更新。在目标匹配过程中,通过对目标前一帧与当前帧的特征相似性进行投票,得到匹配目标。利用视频图像进行实验,结果表明:该方法对噪声、阴影、遮挡、分裂等具有良好的鲁棒性,较好地实现了多目标的跟踪。-The method used object matching to get objects’ position in differe
Digital_Image_Correlation_080910
- 目标跟踪,本文围绕人运动的视觉分析中的重要课题——基于模型的行人跟踪——展开研究,它不仅涉及底层视觉的许多问题,还是高层视觉处理的基础。基于模型的跟踪是解决行人跟踪问题的一般性框架。-A Method of Passing People Tracking and Counting Based on Real- Time Image- Sequence
AVehicleContourbasedMethodforOcclusion
- 摘要:在交通场景下进行多目标跟踪时,如何正确检测出车辆间的相互遮挡是影响车辆跟踪结果的关键。针对问题,运用投 影理论分析交通场景的三维几何投影特征.用长方体投影轮廓模型对车辆进行建模,重构其乏维投影轮廓,以进行遮挡的检 测和分离。与以往的方法相比,它在估计出的车辆外形轮廓基础t-进行遮挡检测,不需要匹配操作,计算量较小,并能解决 基于匹配的方法无法对付的初始遮挡问题。用实验验证了该算法的有效性。-In multi—object tracking of traf氍c scene。how
7788
- 大名鼎鼎的方帅的博士学位论文---目前,计算机智能视频监控在理论和应用上都面临着很多难题,国内外大批学者投身于该领域的研究和探索,并且取得了大量的成果.本文是在这些成果的基础上,对计算机智能视频监控系统的关键技术进行研究.主要贡献可概括如下:首先,对目标检测技术进行了研究,并提出了一种基于背景建模的运动目标检测算法.利用统计的方法建立了基于颜色和颜色梯度的背景模型,并实时地对背景模型进行更新,最后将这两种背景模型综合考虑对目标进行了有效的检测.接着,研究了复杂背景下多目标跟踪问题,提出了基于蒙特
work
- 对于细胞图像序列中多目标的追踪是细胞运动研究中的难点,针对高密度细胞图像中细胞运动的复杂性,本文提出一个细胞分割和追踪的系统。在细胞分割部分,针对实验所用细胞图像序列的特点,本文分别采用了不同的分割方法。在基本的细胞分割后,由于得到的分割图像存在着一些粘连细胞,为了将之分离,采用了基于Freeman code法对细胞轮廓进行跟踪编码。根据编码所得的链码特征分析细胞的轮廓形态,找出粘连细胞图像中的凹角点,再将凹角点进行分组配对完成粘连细胞的分离。在追踪部分,针对细胞的运动特性,将细胞分为惰性细胞和
pso1
- 某些实际问题的优化目标是求所有的局部最优解, 即求解多峰寻优问题, 为了求解多峰优化问题, 提出了改造的微粒 群优化算法. 尽量减少微粒群算法中的全局因素, 从而增大其局部因素, 同时采用变步长方法增加微粒的多样性. 并给出了该算法 的原理和步骤. 仿真实验表明该算法概念清楚, 计算简单, 具有很好的局部寻优特性, 可应用求解于多峰寻优问题. 另外还给出了几 个运算实例和与其它优化算法的比较.-Some of the practical problems the optimizati
An-Object-Tracking-Method-
- 室外场景下由于场景背景条件变化容易导致视频目标跟踪稳定性差。该文提出一种利用红外和可见光传感 器的双通道视频目标跟踪方法。该算法利用可见光图像的目标颜色特征和红外图像的目标轮廓特征,结合均值漂移 算法与水平集曲线演化实现目标定位,并给出了目标尺度和模板更新方法;对多目标跟踪的互相遮挡问题,通过判 断目标合并与分离实现遮挡时多个目标的定位。实验结果表明,该文方法能够有效处理光照变化、阴影、遮挡等情 况,实现目标的稳定跟踪。-Considering the poor stabilit
Interacting-multiple-model-algorithm
- 针对交互式多模型(IMM)算法的目标跟踪精度问题,提出了一种自适应模型集IMM算法. 利用IMM算法中的模型概率含义,并以此对模型集的收缩比例因子进行设计,这样模型集通过向 中心模型收敛可完成自适应调整,而自适应调整过程能有效、实时地利用观测信息.-Tracking accuracy, the goal of interacting multiple model (IMM) algorithm and an adaptive model set IMM algorithm. IMM
Study-of-Target-Tracking
- 本文讨论了小波神经网络在机动多目标跟踪中的应用,多目标跟踪就是主体为了维持对多个目标(客体)当前状态的估计而对所接收的量测信息进行处理的过程。以非线性大规模并行分布式处理为特征的神经网络可以解决传统的目标跟踪方法的难以解决的计算量组合爆炸问题以及需要确定机动目标的数学模型的问题, 将小波分析原理与神经网络相融合,提出了基于小波神经网络的目标跟踪方法来提高系统的学习能力、表达能力以及机动多目标状态的估计精度。-This article discusses the application of wa
4
- 本文针对摄像机运动情况下的多目标跟踪问题,提出了基于粒子滤波的跟踪算法。在粒子滤波算法基础上,将二阶自回归过程作为系统状态转移模型,HSV 颜色直方图作为观测模型,对视频中多个目标的位置、大小进行跟踪。实验结果表明,该算法能实时正确地跟踪多个目标,并对局部遮挡有较好的鲁棒性,也能在目标短暂消失导致跟踪失败后,在目标重新出现后及时捕获并继续进行跟踪。-A tracking algorithm based on particle filter is proposed to deal with mul
2
- 本文在在尺度不变特征变换(Scale invariant feature transform,SIFT)特征匹配算法的基础上, 提出了一种基于累积特征的多目标的跟踪算法, 通过对目标的SIFT特征进行实时更新来去除由噪声(或形变)带来的\过时"特征信息, 保证了特征的稳定, 提高了匹配准确度. 实验结果表明, 本算法能够有效处理目标由于旋转、形变而导致跟踪性能下降甚至跟踪目标丢失的问题, 同时对跟踪过程中多目标的关联, 也具有较好的鲁棒性.-In this paper, the Scale In
Tracking-multiple-objects
- 遮挡情况下的多目标跟踪算法,该算法较好地解决了运动目标的遮挡问题-Tracking multiple objects in occlusions
background-model8
- :基于背景建模的运动目标分割是智能视频监控的重要任务,模型的质量直接影响到检测、跟踪、识别等运动分析的准确性.当前的建模方法多是单层的,忽略了像素特征在时域和空域上的联系,模型描述不够准确,对于背景扰动、全局光照变化及复杂的室内外场景等多种情况鲁棒性不强,导致了分割中出现空洞和噪声点.针对这些问题提出了一种双层建模的方法,在第一层提取时域上的像素亮度特征采用码本建模,第二层提取邻域纹理特征采用基于中心对称的局部二值模式建模.实验证明该方法在用于运动分割时,比常用方法具有更好的准确性和鲁棒性.-M
156423
- 为实现教室监控视频中多目标智能跟踪,研究提出了一种基于前景检测修正和梯度特征的改进型CamShift算法。该算法利用收敛速度分段分区可调的背景重建算法对视频序列进行背景重建与前景检测。综合考虑了前景检测结果,图像 梯度和颜色特征,进行CamShift目标跟踪。该算法能自适应调节梯度与颜色特征融合比例,对强光有一定的抑制作用。开发了实验软件,仿真结果表明了所提算法的有效性,为解决教室照明用电浪费问题提供一个可行的解决方案。-Surveillance video in the classroom
1
- 计算机视觉中多目标跟踪问题的经典文献,在实时条件下,多视角跟踪目标的三维位置-A Relaxation Algorithm for Real-time Multiple View 3D-Tracking
laser-kinect-pointcloud-register-icp
- 针对三维重建中的点云配准问题,提出一种基于点云特征的自动配准算法。利用微软Kinect传感器采集物 体的多视角深度图像,提取目标区域并转化为三维点云。对点云进行滤波并估计快速点特征直方图特征,结合双向 快速近似最近邻搜索算法得到初始对应点集,并使用随机采样一致性算法确定最终对应点集。根据奇异值分解法 求出点云的变换矩阵初始值,在初始配准的基础上运用迭代最近点算法做精细配准。实验结果表明,该配准方法既 保证了三维点云的配准质量,又降低了计算复杂度,具有较高的可操作性和鲁棒性。