搜索资源列表
svm_multiclass.tar
- SVM支持向量机多分类器源码,用过的,绝对好用-SVM SVM classifier source, used absolutely everything
oao
- 多分类问题的支持向量机源程序一对一方法 绝对可以运行-Multi-class SVM using One-Against-One decompositionoao
SVM_FACE
- 基于支持向量机的人脸检测训练集增强算法实现。根据支持向量机(support vector machine,简称SVM)~ ,对基于边界的分类算"~(geometric approach)~ 言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例.探讨了 对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法 IRS(improved reduced set)的训练集边界样本增强算法,用以扩大-91l练集并改
SVMinPR
- 模式识别中支持向量机的应用。在图像识别,多维数据分类中有很好的应用。-Pattern recognition Support Vector Machine. In image recognition, multi-dimensional data classification has a good application.
7788
- 大名鼎鼎的方帅的博士学位论文---目前,计算机智能视频监控在理论和应用上都面临着很多难题,国内外大批学者投身于该领域的研究和探索,并且取得了大量的成果.本文是在这些成果的基础上,对计算机智能视频监控系统的关键技术进行研究.主要贡献可概括如下:首先,对目标检测技术进行了研究,并提出了一种基于背景建模的运动目标检测算法.利用统计的方法建立了基于颜色和颜色梯度的背景模型,并实时地对背景模型进行更新,最后将这两种背景模型综合考虑对目标进行了有效的检测.接着,研究了复杂背景下多目标跟踪问题,提出了基于蒙特
000
- 支持向量机(svM)是一种新的机器学习技术。本文采用一对一方法构建多分类SVM 分类器。利用常用的灰度共生矩阵方法提取图像纹理特征,组成特征向量,输入构建好的SVM 多分类器中进行分类。对从Brodatz纹理库中选取的4张纹理图像进行了分类实验,取得较好的 分类结果-Support vector machine (svM) is a new machine learning techniques. In this paper, one way to build a multi-cla
01
- 的研究彩色数字图像的计算机分类识别方法并应用于古瓷片的自动分类。方法提出 了一种色彩纹理特征的提取模型,采用该模型,利用IGabor滤波器提取数字图像的色彩纹理特征, 并构造支持向量分类机(SVM)分类器组。结果实现了高准确率多类别图像的自动分类识别,并 成功应用于古瓷片的自动分类。结论色彩纹理特征提取方法将颜色与纹理进行融合,增强了数 字图像之间的特征区分能力。-Study color digital image classification and recognition m
HOG
- 为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利 用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证, 提出的算法对运动目标进行较好地分类, 而且在运算速度方面较传
SVM-and--Face-Recognition
- 支持向量机及其在人脸识别中的应用研究 上海交通大学博士论文,在知网上面付费下载得到的。本文从应用的角度出发,较为全面地对一些相关问题进行探讨,并使用Visual C++实现了一个基于支持向量机的人脸识别软件—idTeller。 论文的主要工作和创新点包括: ·提出了两种基于VC边界的支持向量机参数选择算法—固定C算法和VC-CV算法。VC边界是两类支持向量机参数选择的一个理想准则,但它的一些固有缺点使其应用变得困难。本文通过将VC边界转化为VC指标,最终把问题归结为对最小包围体的求解,从理论
472aef0ac0cf
- 支持向量机的matlab实现,支持多分类,据有GUI操作界面,简单易懂,其中包括输入输出数据。-Support Vector Machines matlab realize, support multi-classification, as far as the operation has GUI interface, easy-to-read, including the input and output data.
Improved-ICA-character-recognition
- 该算法一种结合改进的基于独立分量分析(ICA)提取算法和基于多层感知器和单向二叉决策树的多类支持向量机分类方法。-The algorithm is a combination of improved based on independent component analysis (ICA) algorithm and multi-class support vector machine classification method based on binary decision tree of
ZHICHIXIANGLIANGJI
- 支持向量机的Matlab实现,支持多分类,据有GUI操作界面,简单易懂,其中包括输入输出数据,通过guide界面来编写程序-Support Vector Machine Matlab realize, support multi-classification, according to a GUI interface, easy to understand, including input and output data through interface programming guide
SVM-reviewed
- 支持向量机方法中也存在着一些亟待解决的问题,主要包括:如何用支持向量机更有效的解决多类分类问题,如何解决支持向量机二次规划过程中存在的瓶颈问题、如何确定核函数以及最优的核参数以保证算法的有效性等。-Support vector machine (SVM) method also exist some problems to be solved, mainly includes: how to use support vector machine (SVM) is more effective t
multiSVMTrain
- 基于matlab的支持向量机多分类器train-Matlab-based support vector machine classifier train
manSVM
- 这是一款基于支持向量机多分类的眼电辅助肌电的人机交互编程,值得下载学习。-EOG EMG assisted interactive program which is a multi-classification based on support vector machines, it is worth downloading learning.
two
- :植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。然而,低维特征不能全面描述叶片信息,识别准确率低,本文提 出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相
Canupo
- C++编码,基于线性判别分析(LDA)和支持向量机(SVM)的多尺度维度特征点云分类算法,通过机器学习方法精确分类。效果可达95%以上,本文件夹内含有详细中文教程。