搜索资源列表
Researchontheshapefeatureextractionandrecognition.
- 主分量分析(PCA ) 是统计学中分析数据的一种有效的方法, 可以将数据从高维数据空间变换到低维特征空间, 因而 可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别 层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a statistical analysis of data in a
ASM_version1b
- ASM是由Cootes和泰勒推出的多分辨率方法的一个例子。 基本思想: 在ASM模型训练,训练从手工绘制的图像轮廓。发现的ASM模型在训练使用主成分分析(PCA),使该模型自动识别数据的主要变化是,如果可能的轮廓/好的对象的轮廓。还包含了ASM模型的协方差矩阵描述行垂直纹理口岸时,在正确的位置。 -Descr iption This is an example of the basic Active Shape Model (ASM) as introduced by Coot
extract_features2.tar
- 各种图像描述符算法,图像特征提取用的是SIFT特征检测子-computes steerable filters, SIFT descr iptor, moments, differential invariants, complex filters, shape context, spin images, PCA-SIFT.