搜索资源列表
车牌识别
- 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向内存中贴图,以保证刷新的效率。 5)程序执行流程 应用程序生成--》
Lesson10Code
- 图形的绘制,如何使用自定义画笔(颜色,线宽,线形)。如何为程序中添加选项菜单和选项设置对话框,如何使用标准颜色对话框,如何使用字体对话框,在选项对话框中实现预览功能。实现选项对话框和窗口类中的数据交换。如何改变对话框和控件的背景色,如何改变控件的文本颜色,对按钮控件的特殊处理。如何在窗口中显示一幅位图。-graphics rendering, since the definition of how to use the brush (color, line width, alignment).
DigitRec
- 数字识别系统源代码: 第一步:训练网络。使用训练样本进行训练 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“
digital-recognise
- 数字识别代码 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。 首先,打开图像(256色) 再次,进行归一化处理。点击“一次性处理” 最后,点击“R”或者使用菜单找到相应项来进行识别识别的结果显示在屏幕上,同时也输出到文件result.txt中 该系统的识别率一般为90% 另外,也可以单独对打开的图片一步一步进行图像预处理工作。但要注意,每一步工作只能执行一遍,而且要按顺序执行。步骤为:“256色位图
szsbxtydm
- 数字识别系统源代码.rar 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意
Neural-network-recognition-system
- 使用说明 第一步:训练网络。使用训练样本进行训练。 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-
DigitRec
- 使用说明 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作