搜索资源列表
DigitRec
- 数字识别系统源代码: 第一步:训练网络。使用训练样本进行训练 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“
digital-recognise
- 数字识别代码 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。 首先,打开图像(256色) 再次,进行归一化处理。点击“一次性处理” 最后,点击“R”或者使用菜单找到相应项来进行识别识别的结果显示在屏幕上,同时也输出到文件result.txt中 该系统的识别率一般为90% 另外,也可以单独对打开的图片一步一步进行图像预处理工作。但要注意,每一步工作只能执行一遍,而且要按顺序执行。步骤为:“256色位图
CardRecognization
- 车牌识别系统 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。
imagesign
- 使用时打开图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,可以实现精确的车牌定位。-open use of pictures, then click the button to turn the "switch", "1", "2" and "3", "4" and "5", can achieve precise positioning of the p
reply_1_1007847
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
detect_vc++_
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
szsbxtydm
- 数字识别系统源代码.rar 第一步:训练网络。使用训练样本进行训练。(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别) 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90%。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意
FaceDetection
- aceDetection工程运行时,首先要通过文件“打开 载入图片face.bmp,而后才可以进行人脸检测 操作,需要强调的是人脸区域检测、眼睛的检测与定位、人嘴的检测与定位、人脸的勾勒四个处理 模块必须按照先后顺序进行,而且各个模块内的各项操作也必须按照菜单栏从上至下的顺序来进行。 另外,由于在人脸检测时用到了先验知识,所以目前只能对给定的图片face.bmp进行处理。-aceDetection running, First to file "opened face.bm
chepaidingwei
- 用Visual C++写的车版定位程序!使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。
Graphex
- 一个很酷的粒径测量软件,对微粒,微球,颗粒等照片用鼠标测量其粒径的软件,使用时从菜单的打开选项打开微球的BMP照片,然后从点击工具按钮的“—》”按钮输入存储测量数据的文件,确定后按住鼠标左键从照片中球的边缘一点划到对面边缘一点,即你认为从起点到终点可以作为球的直径时松开左键,则从起点到终点的点数就存到数据文件中,一般一张图片上百个球也很快就能处理完,这样的得到的是点数,然后你在用比例尺照片的点数相除就转换为真是单位量度,如有疑问请发邮件 yjdai@126.com
imageproj
- 原创图片检索程序。选择一张图片以及一个图片文件夹,提取图片特征,使用R树进行查询。请在vc8以上环境打开此工程。
recognition
- 使用时打开此源码目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。
车牌定位
- 车牌定位 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图
车牌定位
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本
FaceDetection
- FaceDetection工程运行时,首先要通过文件“打开 载入图片face.bmp,而后才可以进行人脸检测 操作,需要强调的是人脸区域检测、眼睛的检测与定位、人嘴的检测与定位、人脸的勾勒四个处理 模块必须按照先后顺序进行,而且各个模块内的各项操作也必须按照菜单栏从上至下的顺序来进行。 另外,由于在人脸检测时用到了先验知识,所以目前只能对给定的图片face.bmp进行处理。-FaceDetection project run-time, first of all documents
carcarddetect
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
Neural-network-recognition-system
- 使用说明 第一步:训练网络。使用训练样本进行训练。 第二步:识别。首先,打开图像(256色);再次,进行归一化处理,点击“一次性处理”;最后,点击“R”或者使用菜单找到相应项来进行识别。识别的结果显示在屏幕上,同时也输出到文件result.txt中。 该系统的识别率一般情况下为90 。 此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。 具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-
chepaishibie
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
CircleFind
- 打开图片,转化为灰度图,利用圆周差分法在图像上搜索圆-Open the picture, converted to grayscale, use the circumferential difference method in image search circle
snake_demo
- 目标轮廓跟踪的Snake算法,带有demo接口。打开图片,选择初始轮廓点,运行跟踪算法即可得到精确的目标轮廓。-The snake contour detection algorithm with demo interface. Open the input picture, some initial points,then the contour tracking algorithm will return a good contour.