搜索资源列表
一维条形码打印系统
- 条形码的生成原理: 条形码的第一数据部分是由 7个数字形成的,其形成的方法详述如下: n 首先使用 产生和 匹配的字母码,该字母码有6个字母组成,字母限于A和B。产生字母码的列表如下 字母码 0 AAA 1 AABABB 2 AABBAB 3 AABBBA 4 ABAABB 5 ABBAAB 6 ABBBAA 7 ABABAB 8 ABABBA 9 ABBABA 表一 映射表 n 将 和 产生的字母码按位进行搭配,来产
200561555616250020000
- 车牌识别系统 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向
CardRecognization
- 车牌识别系统 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。
imagesign
- 使用时打开图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,可以实现精确的车牌定位。-open use of pictures, then click the button to turn the "switch", "1", "2" and "3", "4" and "5", can achieve precise positioning of the p
reply_1_1007847
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
detect_vc++_
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
chepaishibie
- 车牌识别源码 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向内存中贴图,以保证刷新的效率。 5)
chepaidingwei
- 用Visual C++写的车版定位程序!使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。
22219011211120071115164509189959
- SUSAN算子用于角点检测的基本步骤: 1) 对于感兴趣的每个象素点(一般的情况就是图像中的每个象素点)作用一圆模板; 2) 根据亮度比较函数计算圆模板中的USAN区域; 3) 根据几何阈值,计算象素点的初始响应; 4) 使用USAN重心与核中心的距离法则去除伪角点,使用USAN重心与核中心的连线上的每个点都必须在USAN区域来保证算法的一致性(即USAN区域的相连性) 5) 对每个象素点的响应,使用 (或更大)的窗口搜索局部极大值,进行非极大值抑制
Corner
- 一种比较好用的边缘检测方法CORNER Find corners in tensity image. % CORNER works by the following step: % 1. Apply the Canny edge detector to the gray level image and obtain a % binary edge-map. % 2. Extract the edge contours from the edge-map, fill the ga
recognition
- 使用时打开此源码目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。
车牌定位
- 车牌定位 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图
2D
- C code for \"Computational Geometry in C (Second Edition)\": Code function Chapter pointer directory ----------------------------------------------------- Triangulate Chapter 1, Code 1.14 /tri Convex Hull(2D) Chapter 3, Code 3.8 /graham Convex Hull(
matlab-5
- 1了解图像变换的意义和手段; 2熟悉离散傅里叶变换、离散余弦变换、离散小波变换的基本性质; 3熟练掌握图像变换的方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB编程实现数字图像的变换。 -An understanding of the meaning and image transformation means 2 familiar with the discrete Fourier transform, discrete cosine t
2D-LDA
- 2维线性判别进行人脸识别的程序,很不错!采用ORL人脸库,取每人的1、3、5、7、9五幅图像作为训练图像,其余作为测试图像,进行二维线性判别。计算出特征向量矩阵,降序排列后,取前d(d=2,4,6,……,20)个特征向量组成的矩阵作为变换矩阵,对训练集合测试集进行特征重建,最后采用最近邻分类器。附有实验的结果。-code for face recognition based 2D-LDA,the performance is nice!
matlab-6
- 数字图形处理实验例题 造成图像退化的原因很多,大致可分为以下几个方面: (1)射线辐射、大气湍流等造成的照片畸变。 (2)模拟图像数字化的过程中,由于会损失部分细节,造成图像质量下降。 (3)镜头聚焦不准产生的散焦模糊。 (4)成像系统中始终存在的噪声干扰。 (5)拍摄时,相机与景物之间的相对运动产生的运动模糊。 (6)底片感光、图像显示时会造成记录显示失真。 (7)成像系统的像差、非线性畸变、有限带宽等造成的图像失真。 (8) 携带遥感仪器的飞行
carcarddetect
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
DigitalImageProcessing4
- 7.1 概述 7.2 边缘检测 7.3 边缘跟踪 4.1 概述 4.2 空域变换增强 4.3 空域滤波增强 4.4 频域增强 4.5 彩色增强 -7.2 Edge Detection 7.1 overview 7.3 Edge tracking 4.1 4.2 Enhanced 4.3 airspace airspace transform filter to enhance the frequency domain 4.4 Enhanced Color Enha
v1s-0.0.5.tar
- V1S 0.0.5 -- Basic V1-Like (simple cells) Object Recognition System -Why is Real-World Visual Object Recognition Hard? (2008) Pinto N, Cox DD, DiCarlo JJ PLoS Computational Biology Vol. 4, No. 1, e27 doi:10.1371/journal.pcbi.0040027 Es
qqcif(5.24)
- 可以对cif,qcif以及qqcif实行人脸检测的程序,是检测序列的。使用的是adaboost算法。可以读入的是cif序列然后将其缩放为qqcif(88*72)然后进行检测,然后在将检测的人脸框长宽坐标各放大4倍 即可在原来的cif图象中标记人脸。 -Can cif, qcif and qqcif implement face detection procedure is to detect sequences. Using adaboost algorithm. Cif can be