搜索资源列表
CardRecognization
- 车牌识别系统 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。
reply_1_1007847
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
detect_vc++_
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
车牌定位
- 车牌定位 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图
车牌定位
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本
carcarddetect
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
chepaishibie
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
cardrecognition
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
faceface
- 系统有以下部分组成:电脑自带摄像头拍照、人脸检测、将人脸照片录入数据库、输入照片进行人脸识别。本程序是基于肤色识别的方法对人脸进行检测,人脸肤色范围是100≤B≤120,140≤R≤160,所以将此范围内的像素点置白,剩余部分置黑。利用imerode函数对图片进行球状腐蚀,然后再对图片进行中值滤波,达到平滑效果。最后,对于这张已经缩放而且二值化和各种处理之后的照片来说,如果白化区域的像素点少于1000,就舍弃。将图片进行分割,这里我们引进了欧拉数。 这样就可以把一些类似颜色人脸的背景排除。
pcnn
- 利用pcnn,每当有一批像素对应的神经元点火,对像素值进行一次修正。第n次点火的所有神经元用矩阵B(n)表示, 已经点火的像素位置标记为‘1’,未点火的标记为‘0’。通过一个3*3的模板滑过B(n),判断若模板内的值全为‘1’或全为‘0’, 则这些像素值不进行处理,否则若模板中心的值为‘1’,则增加该位置的像素值的大小,中心值为‘0’,则减小像素值。该功能由xiugai(B,K)函数实现 Beta取负值来抑制周围的神经元点火,因为输入pcnn(X)的是模糊图像,抑制之后使处理的
5.5MATLAB
- 输入一副图像,检测图像的RGB,并输出其值的矩阵,将符合公式R>Rt,R>G>B,S>=(255-R)*S/R,等的图像点标记出来,并输出图像-A pair of input images, the image detecting RGB, and outputs the value of the matrix, would be consistent with the formula R> Rt, R> G> B, S> = (255-R)* S
Diagonal and edge
- B正在做一个关于图像理解方面的研究,她的目标是识别图像中的轮廓。当前阶段,她希望能够识别正方形。图像用一个矩阵表示,矩阵的每个元素对应于图像中的一个像素点,值为0或1,0表示背景,1表示前景。需要寻找的正方形必须满足线宽为单像素,且大小至少为2x2。她希望你能帮她找出图像中满足如下条件的两类正方形的个数: 正方形的边与矩阵边缘平行; 正方形的边与矩阵对角线平行;(B is doing a research on image understanding, and her goal is to