搜索资源列表
车牌识别
- 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向内存中贴图,以保证刷新的效率。 5)程序执行流程 应用程序生成--》
200561555616250020000
- 车牌识别系统 需要注意的地方: 使用VC++6.0做开发工具, 采用简单的SDI框架结构 ,一次处理一幅位图(有兴趣的可以作成MDI) 1)位图信息的数据是从左下往右下为一行,一行一行往上排的。 2)每行像素应该是4的倍数,不足的地方用空点补齐,读的时候注意跳过冗余点。 3)主要数据都存在Doc里面,BMP的主要数据存在一个由ImgData指向的BYTE型的内存空间(根据位图的大小,动态分配的)。 4)数据读进来以后,注意向
CardRecognization
- 车牌识别系统 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。
reply_1_1007847
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
detect_vc++_
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
GMM_based_PNN
- 基于人工神经网络和GMM的数字识别-based on artificial neural networks and the digital identification G
sift
- 所上载的为 Vedaldi 根据D. G. Lowe sift 算法编写的 MATLAB代码。尽管此网上有类似源码,但不同的是本附件代码已经经过本人编译,测试,可以直接运行。而且对sift.m中的一个BUG进行了修正(已通知到 Mr Vedaldi)。
g-en-any-video-converter
- 文件类型转换可以将各种格式的视频文件之间相互转换为你所需要的格式
车牌定位
- 车牌定位 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图
车牌定位
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本
RSC
- 强壮的人脸识别系统,发表于cvpr2011年,程序是应用matlab实现-Recently the sparse representation (or coding) based classifi cation (SRC) has been successfully used in face recognition. In SRC, the testing image is represented as a sparse linear combination of the trai
carcarddetect
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
gsnake.tar
- GSNAKE API provides tools for contour modeling, extraction, detection and classification, based on generalized active contour model (g-snake). GSNAKE consists of a set of objects built in C++, suitable for use in the area of feature extraction, chara
chepaishibie
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
cardrecognition
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
g
- 人脸识别核心算法,一种人脸识别算法,不错的资料-The core face recognition algorithm, a face recognition algorithm, good information
RSC
- 人脸识别的稀疏表示识别方法将稀疏表示的保真度表示为余项的L2范数,但最大似然估计理论证明这样的假设要求余项服从高斯分布,实际中这样的分布可能并不成立,特别是当测试图像中存在噪声、遮挡和伪装等异常像素,这就导致传统的保真度表达式所构造的稀疏表示模型对上述这些情况缺少足够的鲁棒性。而最大似然稀疏表示识别模型则基于最大似然估计理论,将保真度表达式改写为余项的最大似然分布函数,并将最大似然问题转化为一个加权优化问题-Recently the sparse representation (or codin
feature-points-matching
- 对灰度差绝对平均值算法匹配次数多,不具有旋转不变性等缺点,提出一种新的目标识别方法。匹配准则采用具 有环形结构的子窗口内的像素差加毂和的形式表示,保证了算法具有旋转不变性。对模板图像中的特征点按照匹配准则分 别在目标图像中找到相应的匹配点,从而完成匹配操作,与传统的相关匹配算法相比,大大减少了匹配次数。对于因遮挡而 丢失的特征点,可根据已匹配特征点之问的相对距离来重新确定,从而实现目标识别的功能。仿真实验验证了该算法的有 效性。-A new target recognition
ImageTest
- AppWizard has created this ImageTest application for you. This file contains a summary of what you will find in each of the files that make up your ImageTest application. ImageTest.vcxproj This is the main project file for VC++ proj
pattern_recognition
- 根据训练集图像,对目标图像中的八个子目标图像进行识别,用红色矩形将各个子目标图像框起来,并在子目标图像的中央位置,写上对其识别的结果,即子目标图像的名字。-请键入文字或网站地址,或者上传文档。 取消 Gēnjù xùnliàn jí túxiàng, duì mùbiāo túxiàng zhōng de bā gè zǐ mùbiāo túxiàng jìnxíng shìbié, yòng hóngsè jǔxíng jiāng gège zǐ mùbiāo túxiàng kuān