搜索资源列表
inhedron.zip
- 判断点是否在多面体之中
utilities
- matlab中几个非常实用的画图程序,分别用来画箭头,方形,球体,多面体,坐标系,非常实用。-matlab drawing on some very practical procedures were used to draw the arrow, square, sphere, polyhedron, coordinate system, very useful.
inhedron
- 判断点是否在多面体之中- Sentences the break point whether in polyhedron
nelder-mead
- nelder_mead优化算法,求多维函数极值的一种算法,不利用任何求导。利用多面体逼近。-nelder_mead optimization algorithm, and a multi-dimensional function extremum algorithm, do not use any derivation. The use of polyhedral approximation.
AI-01intoduction
- 1. 实现深度缓存(z-buffer)算法. 输入数据是简单的多边形网格. 2. 实现简单的光线跟踪(Ray-tracing)算法. 输入应包含多边形网格(多面体)和圆. -1. To achieve the depth buffer (z-buffer) algorithm. Input data is a simple polygon mesh. 2. To achieve a simple ray tracing (Ray-tracing) algorithm. Polyg
AI-03SolvingProblembySerching
- 1. 实现深度缓存(z-buffer)算法. 输入数据是简单的多边形网格. 2. 实现简单的光线跟踪(Ray-tracing)算法. 输入应包含多边形网格(多面体)和圆. -1. To achieve the depth buffer (z-buffer) algorithm. Input data is a simple polygon mesh. 2. To achieve a simple ray tracing (Ray-tracing) algorithm. Polyg
geometry-model
- 计算多面体的容积,判断四点是否共面的简单算法-account the area of polyhedron
check_n_final
- 这个项目主要是实现多线程判断大量点与多面体的情况,在空间体积计算模拟等方面应该会有非常好的实用价值。具体就是判断点是否是在多面体的内部,外部,面上,顶点。并输出点和所在多面体的整体坐标。目前,本程序主要是针对凸6面体,但很容易扩展到N凸面体。-This project is multi-threaded to determine a large number of points with the polyhedron, should have very good practical value
POLYHEDRON
- 采用线积分均匀任意形状的多面体源的全部重力张量的分析计算-Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals
demos
- 用来构建一个多面体集合以及判断一个多面体的属性,是否空集,是否有界,是否满维 用来构建广义凸集,求MPC模型集 多面体之间的几何操作,求解非冗余不等式等-Used to build a set of polyhedral polyhedron and the judgment of a property, whether empty set, whether bounded, whether used to build a full-dimensional generalized con
DC_Power_flow
- 利用奇诺多面体描述光伏发电出力的不确定性(The Chino polytopic descr iption photovoltaic power generation uncertainty)
Cluster_Generator_R2009B
- 不错的用于生成多面体团簇的matlab代码(Good matlab code for generating polyhedral clusters.)
紧密堆积多面体程序
- 实现多个原子紧密堆积的问题,实现N个原子紧密堆积(dense packing of atoms)