搜索资源列表
realDBSCAN
- 二维的DBSCAN聚类算法,输入(x,y)数组,搜索半径Eps,密度搜索参数Minpts。输出: Clusters,每一行代表一个簇,形式为簇的对象对应的原数据集的ID-two-dimensional clustering algorithm, the input (x, y) array, search radius Eps. Minpts density search parameters. Output : Clusters, each firm on behalf of a cluste
KMeansV
- k-means聚类算法在二维平面上的可视化实现 聚类时可以设置类数和迭代阈值 聚类结果用色彩和类圆清楚的表现出来-k-means clustering algorithm in a two-dimensional plane with the Visualization of clustering can be set up several categories and iterative threshold Clustering results using color and clas
td
- 二维点集合聚类的图像化演示程序 用它可以很直观的看到聚类的整个过程-2D point set of images of the cluster demo program can use it directly to see the whole process of clustering
devide
- 基于二维直方图的图像模糊聚类分割方法,内有算法的参考论文。
现代统计学与SAS应用
- 本书共分6篇,第1篇统计学基础知识与SAS软件应用技巧,介绍了统计学的基本概念和学习方法、试验设计入门、统计描述、SAS软件应用入门、编写SAS实用程序的技巧、单变量统计分析和利用SAS/GRAPH模块绘制常用统计图的方法。第2篇试验设计与定量资料的统计分析,介绍了与t检验、非参数检验和各种方差分析有关的试验设计和数据处理方法。第3篇试验设计与定性资料的统计分析,介绍了处理二维及高维列联表资料的各种统计分析 方法,包括卡方检验、Fisher的精确检验、典型相关分析、logistic回归模型和对数
floatMec
- 极大熵聚类算法的C++实现,输入为二维矩阵,修改宏定义可实现多维-Maximum Entropy Clustering Algorithm C++ implementation, the input for the two-dimensional matrix, can be modified to achieve multi-dimensional macro definition
kmeans
- 聚类算法kmeans,比较简单的聚类算法,通过欧几里德距离确定聚类的标准,对二维的点进行聚类-Clustering algorithm kmeans, relatively simple clustering algorithm, through the Euclidean distance to determine the standard clustering of the points of two-dimensional clustering
FuzzyClusteringToolbox
- 四种聚类算法源代码及示例代码,本程序的最终目的是形成一套标准的用于聚类、可扩展的工具。包括的内容有1. 聚类算法:Kmeans和Kmedoid算法、FCMclust, GKclust, GGclust算法 2. 评估分类原型:程序可以在二维图像上绘制出聚类的结果 3. 验证:程序给每一个算法提供验证机制,每个聚类算法会统计Partition Coefficient (PC), Classification Entropy (CE), Partition Index (SC), Separatio
FuzzyClusteringToolbox
- 四种聚类算法源代码及示例代码,本程序的最终目的是形成一套标准的用于聚类、可扩展的工具。包括的内容有1. 聚类算法:Kmeans和Kmedoid算法、FCMclust, GKclust, GGclust算法 2. 评估分类原型:程序可以在二维图像上绘制出聚类的结果 3. 验证:程序给每一个算法提供验证机制,每个聚类算法会统计Partition Coefficient (PC), Classification Entropy (CE), Partition Index (SC), Separatio
gcluto_1_0
- 根据聚类结果自动生成二维聚类图,可以支持现有多种平台。-According to the results of auto-generated two-dimensional clustering dendrogram, you can support the existing multiple platforms.
Pattern_recognition4
- 张学工老师模式识别第四次作业,分别用C均值方法,分层聚类方法和非监督参数下正态分布函数估计的贝叶斯决策对身高体重二维数据进行分类。-Zhang engineering teacher fourth pattern recognition operations, respectively C-means, hierarchical clustering methods, and non-normal distribution function under the supervision of th
rbf_atrifical_neual_networks
- ① 样本数据从MATLAB命令窗口或新建一M文件作为数据输入文件,样本输入变量名为samin,样本输出变量名samout 样本个数和每个样本的维数可任意,样本输出的个数与样本个数应一致,即保证每个样本都对应一个期望输出,但每个输出的维数不要求与输入的维数相同,可任意; ② 聚类中心的个数(即基函数的个数)可根据实际情况调整;同样可调整参数的还有重叠系数、聚类中心最大更新次数、聚类中心更新终止误差; ③ 训练结束后进行测试时,要求输入的测试数据与样本具有相同的维数,测试数据的个数可任意;
kmeans
- 基于matlab的K-means聚类算法的实现以及二维随机点的聚类结果-Matlab-based K-means clustering algorithm
emalgorithmusedtocluster
- 采用em算法对某个具体的二维数据集进行聚类-Em algorithm using two-dimensional data set to a specific cluster
AnImprovedHeuristicAnt-ClusteringAlgorithm
- 本文提出了一种可以带来启发式知识指导蚂蚁在二维网格空间移动。降低移动蚂蚁的随机性,避免了产生“未分配的数据对象”。我们通过实验结果表明,这种改进的聚类启发式蚁群算法具有优越性并减少在经典算法的运行时间。-An improved heuristic ant—clustering algorithm(HAC)is presented in this paper.A device of memory bank is proposed,which can bring forth heuristic
iosdata(N-dimension)
- ISODATA算法实现由原来二维扩展到任意维样本点得聚类分析,具有很强的应用性,代码中对原理性东西作了详细的注释-ISODATA algorithm extended to any dimension from the original two-dimensional sample points have to cluster analysis, has a strong application, the code of the principle of detailed notes of wh
K-average(N-dimension)
- K均值聚类算法实现有二维的聚类扩展到任意维样本点的聚类,代码中附加了详细的原理性说明,还有相关例子提示,效果不错-K-means clustering algorithm to achieve a two-dimensional clustering extends to any dimension of the cluster sample points, the code attached to the principle of detailed instructions, and tips
K-MEANS-N
- K均值聚类算法实现有二维的聚类扩展到任意维样本点的聚类.-K-means clustering algorithm to achieve a two-dimensional clustering extends to any dimension of the cluster sample points.
k-means-matlab
- 利用k-means算法实现二维平面点的聚类,包括了运行源代码和结果图(The k-means algorithm is used to realize the clustering of two-dimensional plane points, including the running source code and the result graph)
som
- 随机产生5类二维坐标系中的数,使用SOM网络进行无监督聚类,将产生的随机数自动聚成五类,并将结果用图像直接显示出来,生成训练好的网络权值(Five kinds of random numbers in two-dimensional coordinate system are generated randomly, and unsupervised clustering is carried out using SOM network. The random numbers generated