搜索资源列表
496876399457457454534
- 粒子滤波技术在非线性、非高斯系统表现出来的优越性,决定了它的应用范围非常广泛。另外,粒子滤波器的多模态处理能力,也是它应用广泛有原因之一。国际上,粒子滤波已被应用于各个领域。在经济学领域,它被应用在经济数据预测;在军事领域已经被应用于雷达跟踪空中飞行物,空对空、空对地的被动式跟踪;在交通管制领域它被应用在对车或人视频监控;它还用于机器人的全局定位。 -Particle filter technology in the non-linear, non-Gaussian system demon
HHT_power-system_power-quality_disturbances-detect
- 优秀论文及配套源码。Hilbert-Huang变换(HHT)是一种新的非平稳信号处理技术,该方法由经验模态 分解(EMD)与Hilbert谱分析两部分组成。任意的非平稳信号首先经过EMD方法处理后被分解为一系列具有不同特征尺度的数据序列,每一个序列称为一个固有模态函数(IMF),然后对每个IMF分量进行Hilbert谱分析得到相应分量的Hilbert谱,汇总所有Hilbert谱就得到了原信号的谱图。该方法从本质上讲是对非平稳信号进行平稳化处理,将信号中真实存在的不同尺度波动或趋势逐级分解出来,最
EEMD
- 改进经验模态分解(EEMD)模型,主要用于非稳定类型号处理,在EMD的基础上考虑了端部效应影响,并对其进行了处理。-Embedded empirical mode decomposition (EEMD) model, mainly for the number of non-stable type of treatment, the end effect is considered on the basis of EMD and its processing.
emd
- 经验模态分解(EMD),可以用来完成对非平稳信号的模态分解和滤波-Empirical mode decomposition
EMD-empirical-mode-decomposition
- EMD程序用于分解非线性非稳定性的曲线,对数据进行分解成本征模态函数,-The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
National-Taiwan-Central-University
- EMD(经验模态分解)程序,用于将非平稳信号分解为一系列不同频率的分量,以方便对信号进行分析。-EMD (empirical mode decomposition) program for the non-stationary signal is decomposed into a series of different frequency components, in order to facilitate the analysis of the signal.
HHT
- Hilbert-Huang变换(HHT)是一种新的非平稳信号处理技术,该方法由经验模态 分解(EMD)与Hilbert谱分析两部分组成。任意的非平稳信号首先经过EMD方法处理后被分解为一系列具有不同特征尺度的数据序列,每一个序列称为一个固有模态函数(IMF),然后对每个IMF分量进行Hilbert谱分析得到相应分量的Hilbert谱,汇总所有Hilbert谱就得到了原信号的谱图。该方法从本质上讲是对非平稳信号进行平稳化处理,将信号中真实存在的不同尺度波动或趋势逐级分解出来,最终用瞬时频率和能量来
希尔伯特黄变换
- HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HSA)。简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换
粒子群算法
- 用改进的粒子群算法对基于非对角MAC矩阵元素均值最小目标函数为目标函数,以简支梁前三阶模态振型为原始数据对简支梁进行传感器优化布置。(The objective function based on the average minimum objective function of the non-diagonal MAC matrix elements is studied by the improved particle swarm algorithm.)
ALIF-master
- 非线性非平稳信号的时频分析是一项非常具有挑战性的工作。为了捕获这些信号中的特征,分析方法必须是局部的、自适应的和稳定的。近年来,不同的研究小组开发了基于分解的分析方法,如Huang等人首创的经验模态分解(EMD)技术。这些方法将信号分解成有限数量的分量,在这些分量上可以更有效地应用时频分析。在本文中,我们考虑迭代滤波(IF)方法作为EMD的替代方法。我们在滤波器上提供了充分的条件,保证了对任意l2信号的中频收敛。然后,我们提出了一种新的技术,自适应局部迭代滤波(ALIF)方法。此外,我们设计了光