搜索资源列表
matlab作业
- 模式识别一份很好的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机-a very good operation, including linear classification; Minimum risk Bayesian classifier; Supervised learning method Hierarchical clustering analysis; K-L transform effective features, supp
BP-nn
- BP神经网络分类器 程序有两种运行状态,一个是学习,另外一个是分类。在学习状态下,在Dos命令符下输入bp learn,便开始学习了,学习的结果放在weight.dat中;在工作状态下,在Dos命令符下输入bp work,便开始识别classfyme.dat中的数据了,识别完成后,结果放在results.dat中。在bp运行的任何一种状态下,都不能手工打开Weight.dat、Sample.dat、classfyme.dat、results.dat中的任何一种。~..~-BP neur
Bayes
- 使用Matlab实现,包括一维特征最小错误率bayes分类器;二维特征最小错误率bayes分类器;二维特征最小风险bayes分类器以及使用的数据集合。-Using the Matlab implementation, including the minimum error rate of one-dimensional characteristics of bayes classifier two-dimensional characteristics of the minimum error
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract efficient features, designed to
work
- 1) 以身高为例,画出男女生身高的直方图并做对比; 2) 采用最大似然估计方法,求男女生身高以及体重分布的参数; 3) 采用贝叶斯估计方法,求男女生身高以及体重分布的参数(假定方差已知,作业请注明自己选定的一些参数情况); 4) 采用最小错误率贝叶斯决策,画出类别判定的决策面。并判断某样本的身高体重分别为(160,45)时应该属于男生还是女生?为(178,70)时呢?(1) taking height as an example, draw the histogram of male and f
kernelBP_chol
- 针对图像的基于核置信传播的分类器,具有收敛速度快,精度高的优点。(This is a sample code for Kernel Belief Propagation Classifier for images.)
svm
- 支持向量机由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归,该程序主要实现svm的分类和回归功能。(SVM was first proposed by Vapnik. Like multilayer sensor network and radial basis function network, SVM can be used for pattern classification and non-linear regression. The p
svm参数优化
- 采用svm来做分类,一般能得到较满意的结果,但用svm做分类预测时需要调节相关的参数才能得到比较理想的预测分类准确率,那么svm的参数该如何选取?该程序主要说明如何更好地提升分类器性能。(Use svm to do the classification, the general can get more satisfactory results, but when using svm to do classification prediction need to adjust the relev
ELM分类器
- ELM是基于深度学习的分类器,运算速度快。 在B_data.m里导入待分类矩阵B.mat(1-n列为特征值,n列为标签);运行B_data.m;再打开fuzzyEn_main.m并运行即可。(ELM is based on depth learning classifier, computing speed. In B_data.m imported matrix to be classified B.mat (1-n as eigenvalues, n as a label); Run B
bayes_C++
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _C++
- 贝叶斯分类器-独立变量_C++,只需更改样本文件名即可测试。(Bias classifier - independent variable _C++, can be tested only by changing the name of the sample file.)
bayes_independent variable _matlab
- 贝叶斯分类器-独立变量_matlab,只需更改样本文件名即可测试。(Bias classifier - independent variable _matlab, can be tested only by changing the name of the sample file.)
bayes_joint variable _matlab
- 贝叶斯分类器-联合变量_C++,只需更改样本文件名即可测试。(The Bias classifier - the joint variable _C++, can be tested only by changing the name of the sample file.)
da
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类器;SVM本身就是(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haa
fa(4)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程)(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast
ga (6)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based
gmm(2)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast Hough circle trans
rq(3)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类分类器(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaB
knn
- 模式识别中的k近邻算法,经过测试,运行结果很好。 最小距离分类器 : 它将各类训练样本划分成若干子类,并在 每个子类中确定代表点 。测试样本的类别则以其与这些代表点距离最近作决策。该方法的缺点是所选择的代表点并不一定能很好地代表各类,其后果将使错误率增加。(The k nearest neighbor algorithm in pattern recognition has been tested and the result is very good. Minimum distance c
SVM 多分类
- 通过一对多,和多对一的方式,将二分类svm转化成多分类分类器(Through the way of one to many and many to one, the two classification SVM is transformed into a multi classification classifier)