搜索资源列表
mnist.pkl
- mnist数据集,手写体识别,可以应用于深度学习的测试数据-mnist dataset, used for handwriting recognize
cnn
- 卷积神经网络(CNN),TensorFlow框架下运行,基于MNIST手写体数据集,可直接运行(Convolutional Neural Network (CNN), run under TensorFlow framework, can run directly based on MNIST handwritten dataset)
fisher
- 利用fisher方法实现手写体数字多分类识别,采用mnist数据集(simple program using fisher)
least_square
- 利用最小二乘法实现手写体数字识别,采用mnist数据集(simple program using least-square)
Run_MNIST
- 下载MNIST数据集(手写体数字0-9)后,搭建卷积神经网络,将输入的数据集经过一层一层的卷积,到最后计算交叉熵,用梯度下降算法去优化它,使它变得最小,这就训练出了权重和偏置量,识别的准确率为91%(Download the MNIST data set (handwritten number 0-9), build a convolutional neural network, the input data set by convolutional layers, finally calcul
CNN
- 手写体识别的训练,采用卷积神经网络,附带数据集下载代码(The training of handwritten recognition is based on convolution neural network, and the download from the dataset.)
MNIST_data
- MNIST数据集是一个手写体数据集,这个数据集由四部分组成,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集;我们可以看出这个其实并不是普通的文本文件或是图片文件,而是一个压缩文件,下载并解压出来,我们看到的是二进制文件。其中包含60000张手写体识别数字图片。(MNIST data set is a handwritten data set, which consists of four parts: a training picture set, a training l
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime