搜索资源列表
nnpractice
- 神经网络手写数字识别。配合美国MNIST标准手写数字字体库-Handwritten digit recognition neural network. With the U.S. standard of handwritten digital font library MNIST
MNIST-handwritten-digits
- 手写数字识别数据集,MNIST,包括原始数据集的所有样本,以及抽取的2000个样本的子集,.mat格式。美国著名数据集NIST的子集,模式识别常用实验数据集-handwritten digits recognition ,dataset, MNIST from NIST, .mat file,
myBPMNIST
- 采用典型的BP算法实现了有导师学习下的神经网络,采用输入层、隐含层和输出层的三层结构,实现了BP算法。并用此算法实现了基于MNIST的数字识别,采用7000个样本做训练,自洽检验正确率达到了99.79%。
myBP
- 采用典型的BP算法实现了基于MNIST的手写数字识别采用输入层、隐含层和输出层的三层结构,实现了BP算法下的神经网络。用7000个样本进行自洽检验,正确率99.79 。-Using typical BP algorithm based on MNIST handwritten numeral recognition using input layer, hidden layer and output layer, three-layer structure, to achieve the neu
MNIST
- 这个压缩包,是一个手写数字识别库,世界上最权威的,美国邮政系统开发的,可以作为标准的数据集合使用测试分类器-This compression package, is a handwritten numeral recognition , the world' s most authoritative, the U.S. postal system developed can be used as a standard data set using the test classifier
mnist库
- 手写数字识别库 手写数字识别库 手写数字识别库
MyCnn
- 用VS2012实现手写数字识别的卷积神经网络算法,用mnist库作为输入-Using VS2012 to achieve the handwritten numeral recognition of the convolution neural network algorithm, using the MNIST library as an input
Demo-MNist
- 利用神经网络进行手写数字识别演示代码!非常具有代表性!-Using neural network Digital Recognition demo code!
readMNIST
- 用ELM实现手写数字的识别,快速,用MNIST数据库(Handwritten numbers recognition realized by ELM)
5.2.2.py
- MNIST数字识别问题 使用验证数据集判断模型结果(tensorflow.examples.tutorials.mnist After 30000 training step(s), test accuracy using average model is 0.9835)
mnist1
- 训练手写数字识别算法,正确率达到91.6%(Training handwritten numeral recognition)
fisher
- 利用fisher方法实现手写体数字多分类识别,采用mnist数据集(simple program using fisher)
least_square
- 利用最小二乘法实现手写体数字识别,采用mnist数据集(simple program using least-square)
nn_code
- 使用Python实现的一些简单神经网络算法,实现的神经网络包括BP,CNN,RNN,LSTM等,主要是理解这些神经网络的算法原理,并附有mnist数字识别例子。(neural network,include BP,CNN,RNN,LSTM.)
mnist.pkl
- mnist数据集,用于手写数字识别的数据集,机器学习入门必备(mnist data,original data in http://yann.lecun.com/exdb/mnist/)
mnist
- 手写数字识别。通过各种数字图片进行机器识别,属于机器学习入门级别编程。(Handwritten digit recognition. The machine is recognized by various digital pictures, which belongs to the introduction level programming of machine learning.)
my_cnn.tar
- 用卷积神经网络实现手写数字识别,数据集为mnist数据集(Convolution neural network is used to realize handwritten numeral recognition. Data set is MNIST data set.)
mnist
- 利用keras实现手写数字识别,使用CNN模型 全连接层+两个卷积层,最后Softmax分类器,识别率超过96%(Using keras to realize handwritten numeral recognition baesd on CNN model. One whole connection layer + two convolution layers, and a Softmax classifier. The recognition accuracy is over 96%
MNIST数据集
- 手写数字识别数据集的训练集和测试集,关于BP神经网络(Handwritten digit recognition data set)
神经网络-手写数字识别
- 利用BP神经网络,对MNIST数据集中的5000张图片进行训练,实现手写数字识别,训练出来的结果准确率在90%。