搜索资源列表
Q_learning
- 强化学习是人工智能中策略学习的一种,基于预期最大利益原则。和博弈论有密切的关系,也是多主体系统学习的常用方法。-Reinforcement learning is a kind of artificial intelligence in the strategic study, based on the principle of best interests is expected. And game theory are closely related, but also multi-agen
RL_Learning
- 详细的讲述强化学习中Q学习算法,并且应用在区域交通系统中,是适合初学者。-RL—learning,q_learning,transform system,for beginner
Q_learning
- 使用html5实现q_learnning算法-use html5 achieve q_learning algorithm
Q_learning
- Q learning for reinforcement learning
questiong one
- Q_learning的简单matlab教程(The visual paradigm of matlab.)
Q_learning
- q学习,强化学习中的人工智能方法,实用型强化学习(Q learning, reinforcement of artificial intelligence methods, practical reinforcement learning)
Q_learning
- Q学习的经典实例,入门经典教程程序,实例对应的是从任一房间出发,走出去的最优路径(classic examples of Q-learning, getting started classic tutorial program)
Q_learning
- 强化学习代码,求解贝尔曼方程,用qlearning求解(Reinforcement learning code, behrman equation, using qlearning solution)
Q_learning
- 这是一种简单的网格迷宫问题Q-learning实现(This is a simple Q-learning implementation of grid maze problem)