搜索资源列表
multiboost-0.71.src.tar
- MultiBoost 是c++实现的多类adaboost酸法。与传统的adaboost算法主要解决二类分类问题不同,MultiBoost解决的是多类的分类问题,而并不是把多类转化成二类问题。-MultiBoost is a C++ implementation of the multi-class AdaBoost algorithm. AdaBoost is a powerful meta-learning algorithm commonly used in machine learning
multiboost-0.61.src.tar
- Adaboost实现,主要用于机器学习的多分类器聚合, 最终形成分类效果逐渐增强的分类器-Adaboost implementation, is mainly used for machine learning, multiple classifier aggregation, the final shape classification results show a gradual increase of the classifier
lunwen
- 提出一种多尺度方向(multi-scale orientation,简称 MSO)特征描述子用于静态图片中的人体目标检 测.MSO 特征由随机采样的图像方块组成,包含了粗特征集合与精特征集合.其中,粗特征是图像块的方向,而精特征 由 Gabor 小波幅值响应竞争获得.对于两种特征,分别采用贪心算法进行选择,并使用级联 Adaboost 算法及 SVM 训 练检测模型.基于粗特征的 Adaboost 分类器能够保证高的检测速度,而基于精特征的 SVM 分类器则保证了检测精 度.另
adaboost-coding
- adaboost 源码,综合多个弱分类器,通过动态修改元组权值以及得到的分类器权值,提升为复合强分类器。-AdaBoost source code, several weak classifiers, by dynamically modifying the tuple classifier obtained by weight and weight, enhance the strong classifier for composite.
gentleboost
- 温柔的形变模型分类器和两个不同的weak-learners决定树桩和感知。 问题是进行多层次的one-vs-all策略-Gentle AdaBoost Classifier with two different weak-learners : Decision Stump and Perceptron. Multi-class problem is performed with the one-vs-all strategy
adaboost_re
- adaboost实现,多个弱分类器,非常有用-adaboost relealization
Ensemble-Learning
- 集成学习将若干基分类器的预测结果进行综合,具体包括Bagging算法和AdaBoost算法;还有随机森林算法,利用多棵树对样本进行训练并预测的一种分类器-Integrated learning integrates the prediction results of several base classifiers, including Bagging algorithm and AdaBoost algorithm and random forest algorithm, using a t
BP-Adaboost
- BP-Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。-The BP-Adaboost model uses BP neural network as weak classifier to repeatedly train BP neural network to predict the sample output. Adaboost algorithm is used to obtain a