搜索资源列表
2D CUDA-based bilinear interpolation
- This MEX performs 2d bilinear interpolation using an NVIDIA graphics chipset. To compile and run this software, one needs the NVIDIA CUDA Toolkit (http://www.nvidia.com/object/cuda_get.html) and, of course, an NVIDIA graphics card of reasonably moder
CUDA.rar
- 文章介绍如何使用CUDA实现神经网络,并把他应用在GPU图像处理单元上,The article describes how to use CUDA to achieve neural networks, and he applied to image processing unit on the GPU
ifft2_cuda
- It is the IFFT transform in CUDA, and very suitable for the programer who is interested in GPU development.
CUDA-SAR-imaging-CSA
- 基于CUDA的SAR成像模拟,在GPU上得到了很好的加速比,由于时间所限,只进行了点目标的仿真。希望多多交流~-CUDA-based SAR imaging simulation on the GPU to get a good speedup, due to time constraints, only a point target simulation. Want to interact-
cuSVMVCcode
- 基于GPU计算的SVM,VC++源码,包括详细文档说明文件。借用了GPU编程的优势,该代码据作者说比常规的libsvm等算法包的训练速度快13-73倍,预测速度快22-172倍。希望对大家有用-cuSVM is a software package for high-speed (Gaussian-kernelized) Support Vector Machine training and prediction that exploits the massively parallel proc
GPU-speedup
- 针对LA在解决大规模优化问题时需要消耗大量的时间无法达到实时性的问题,结合GPU的高速并行性,本文提出了一种基于GPU(Graphics Processing Unit,GPU)加速的细粒度并行免疫算法。本算法借助CUJDA(Compute Unifled Device Architecture,CUDA)统一架构,将实现过程转化成CUDA线程块并行计算过程,使得免疫算法在GPU中加速执行,在取得较好的优化效果的同时,解决了细粒度并行的群体规模限制问题,提高了算法的运行速度。-Solution
cuda-GPU
- 本文详细分析了Tesla GPU图形与计算架构和CUDA统一计算设备架构,详细描述了如何对计算任务进行并行分解,并通过CUDA的双层并行编程模型映射到Tesla GPU上。 在本文的实现部分,以软件开发流程为主线,描述了如何利用CUDA实现模式识别中的三种常用算法-The paper analyzed the Tesla GPU computing architecture and CUDA graphics and computing devices unified architecture,
GPU-JP08-1parte
- How to works GPU and how to instal CUDA
GPU-Gems3
- 给出了GPU的最新快照,详细描述了当今最新的GPU的内部架构,以及如何利用GPU的编程技巧。另外额外探讨了如何利用GPU的计算能力完成其他计算任务(CUDA)。-This third volume of the best-selling GPU Gems series provides a snapshot of today s latest Graphics Processing Unit (GPU) programming techniques. The programmability of
MATLAB-CUDA
- The latest generation of high-end video cards off er considerable computing power using their 100–200 on-card processors, 0.3–1.0+ GB of RAM, and fast inter-processor communications. One promising application of this Graphics Processing Un
sph-gpu
- 一个SPH的程序,C++实现,带CUDA计算。-A SPH source code implemented with C++, using CUDA techonology.
cuda-meme-3.0.12
- 此程序用于GPU实现的对生物科学中的motif discovery算法进行加速-Accelerating Motif Discovery in Biological Sequences Using CUDA-enabled Graphics Processing Units
rbm_binary_binary
- Restricted Boltzmann Machine with binary visible ,hidden units and GPU (CUDA) support.
cuda-convnet
- 卷积神经网的GPU高效并行实现,用于大规模图像识别-A efficient GPU implementation of CNN with application to large-scale image recognition
cuda-convnet-master
- 基于GPU的 ,深度学习,Python代码-Based on GPU, deep learning, Python Code
cuda_monte_carlo
- 这是论文 On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods 的配套代码,对于了解GPU cuda并行编程有用.-This is the thesis " On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Mo
CUDA-code
- 本代码是CUDA C/C++编程入门者学习的,其中包括对GPU设备参数的获取代码,原子操作,流等代码。初学者掌握并行计算不错的入门程序-The code is CUDA C/C++ beginners to learn programming, including the GPU to get the code of the device parameters, atomic operation, flow, etc. code. Parallel Computing for beginners
CorrectionImage
- 这是在Matlab软件平台下的 GPU程序,进行图像放大的并行运算,使用CUDA来编写程序。(This is in the Matlab software platform under the GPU program, image amplification parallel operation, using CUDA to write programs.)
euler2d_cudaFortran-master
- GPU实现2d欧拉方程问题,fortran 实现,简单易学,可以下载试试(GPU 2D Euler equations to achieve the problem, FORTRAN implementation, easy to learn, you can download to try)
marchingCubes
- 1.在MATLAB中直接实现Marching Cubes; 2.使用了向量化和预分配的概念在MATLAB中优化; 3.用c-mex函数和GPU实现.(1. Marching Cubes is realized directly in MATLAB; 2., the concepts of VQ and pre allocation are optimized in MATLAB. 3. is implemented with c-MEX function and GPU.)