搜索资源列表
CKPCA-HOG-SVM
- 为了准确地对监控场景中的运动目标进行语义上的分类,提出了一种基于聚类的核主成分分析梯度方向直方图和二又决策树支持向量机的运动目标分类算法。-In order to accurately monitor the movement of scene targets semantic classification, the clustering based on kernel principal component analysis of gradient direction histograms,
learcode
- 行人检测源程序,居于svm技术。和梯度直方图提取-Pedestrian Detection source, living in SVM technology. And gradient histogram extraction
hog
- Hog try I try to implement hog descr iptor
CODE
- 1.GeometricContext文件是完成图片中几何方向目标分类。 参考文献《Automatic Photo Pop-up》Hoiem 2005 2 GrabCut文件是完成图像中目标交互式分割 参考文献《“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts》 C. Rother 2004 3 HOG文件是自己编写的根据HOG特征检测行人的matlab代码 4 虹膜识别程序
exercise5
- Matlab HOG exercise matlab svm learning
PedestrianDetectionHoG
- HOG特征行人检测 SVM支持向量机 分类-HOG feature pedestrian detection SVM support vector machine classification
lunwen
- 提出一种多尺度方向(multi-scale orientation,简称 MSO)特征描述子用于静态图片中的人体目标检 测.MSO 特征由随机采样的图像方块组成,包含了粗特征集合与精特征集合.其中,粗特征是图像块的方向,而精特征 由 Gabor 小波幅值响应竞争获得.对于两种特征,分别采用贪心算法进行选择,并使用级联 Adaboost 算法及 SVM 训 练检测模型.基于粗特征的 Adaboost 分类器能够保证高的检测速度,而基于精特征的 SVM 分类器则保证了检测精 度.另
pedestrain
- 经典的行人检测算法,利用HOG和SVM实现此算法。已调试可以正常运行。-Classic pedestrian detection algorithm, HOG and SVM to implement this algorithm. Has debugging normal operation.
Histogram-OrientedGradient
- HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测。-HOG (Histogram of Oriented Gradient) direction of the gradient histogram is mainly used to extract image features, the most commonly used is a combination of svm detect pedestria
INRIAHogLbpLabel
- 本方法是hog+lbp+svm来判断是否为行人,函数库为opencv,代码为C++,hog是opencv自带的,lbp为均匀模式,59维度,训练样本为INRIA数据集-opencv lbp svm president detection inria data
imgtest4
- hog+svm和基于中值建模的背景差分法的行人检测-hog+svm and pedestrians modeled based on the median background subtraction method to detect
hogsvm
- 结合HOG特征算子和SVM分类器的目标识别代码,这是一个节点性的贡献(Target recognition code combining HOG feature operator and SVM classifier)
HOG_LBP
- 融合hog与lbp特征的图像分类,使用svm进行分类,最终给出运行混淆矩阵(The image classification of hog and LBP features is classified by SVM, and the run obfuscation matrix is finally given.)
da
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类器;SVM本身就是(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haa
fa(4)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程)(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast
ga (6)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based
gmm(2)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast Hough circle trans
rq(3)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类分类器(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaB
HOGSVM
- 输入训练样本集和测试样本集,通过提取HOG然后用SVM实现分类。(Input training samples and test samples, extract HOG and implement classification with SVM.)