搜索资源列表
mvdr_3n
- 均匀直线阵的自适应波束形成,采用MVDR算法,对一个均匀直线阵求出最佳权,得到方向图。-Uniform linear array adaptive beamforming, MVDR algorithm to find the optimal weight of a uniform linear array pattern.
jiyumohushenjingwangluo
- 基于模糊神经网络盲均衡算法的研究 摘要 无线和数字通信系统中,由于信号在传输过程中会受到复杂传播机制 的影响,从而产生码间干扰。为了消除码间干扰,要在接收端进行均衡, 以补偿信道特性,正确恢复发送序列。传统的均衡器由于需要不断地发送 训练序列,已经不能满足数字通信技术发展的要求。盲均衡技术不需要训 练序列,仅利用接收序列的统计特性便能自适应地调节参数,也就是说, 盲均衡技术本身完全不用训练序列,就可以自启动收敛并防止失锁情况, 且能使滤波器的输出与要恢复的输入信号
YE
- 在原始的fcm算法基础上,对算法中的聚类数c和加权指数m给出优选方法,进而而出了fcm参数优选自适应算法,通过人造数据与具有实际背景的数据验证可以看出该算法是有效的,该算法不但可以自适应的给出最佳的聚类数,而且可以验证聚类的有效性,达到最佳聚类的目的。-In the original fcm algorithm based on the number of clusters on the algorithm and the weighted index m given c preferred m
Immune_Chaotic_Network_Algorithm_for_Multimodal_Fu
- 针对多峰函数优化问题,借鉴混沌遍历特性和免疫网络理论,提出一种免疫混沌网络算法。算法利用混沌运动的自身规律在不同的峰值区域内搜索最佳抗体,增强了算法的局部搜索能力;采用网络抑制策略,保持了种群的多样性;通过网络补充机制自适应地调节抗体群的规模,提高了算法对不同类型多峰函数的适应能力。仿真结果表明该算法能有效地改善种群的多样性,较好地保持全局搜索和局部搜索的动态平衡,具有更强的多峰函数优化能力-Referred to the ergodicity of chaos and immune netwo
adaptive-genetic-algorithm
- 自适应GA SVM 参数选择算法研究Param eter selection algorithm for support vector machines based on adaptive genetic algorithm 支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但 是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果, 而且采用人工的方法选择 SVM 参数比较浪费
Adaptive_pid
- 在生产过程中为了提高产品质量,增加产量,节约原材料,要求生产管理及生产过程始终处于最优工作状态。因此产生了一种最优控制的方法,这就叫自适应控制。在这种控制中要求系统能够根据被测参数,环境及原材料的成本的变化而自动对系统进行调节,使系统随时处于最佳状态。自适应控制包括性能估计(辨别)、决策和修改三个环节。它是微机控制系统的发展方向。但由于控制规律难以掌握,所以推广起来尚有一些难以解决的问题。 加入自适应的pid控制就带有了一些智能特点,像生物一样能适应外界条件的变化。自适应PID不但可以较好
Ant-Colony-Optimization
- 蚁群算法路径寻优,可以实现三维路径规划,可运行,得到最佳个体适应度变化趋势和寻路径过程。-Ant colony algorithm for route optimization, can achieve three-dimensional path planning, operations, get the best individual fitness trends and find the path process.
遗传算法
- 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过
遗传算法
- 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过