搜索资源列表
Fortran_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
bp.rar
- BP神经网络自适应步长训练算法,采用最小误差法,梯度下降法,自适应调节权值,BP neural network training anaysis, is realized by using error feed back, gradient descent applied updating of synaptic weights
SURFACESMATCHINGALGORITHMBASEDONGENETICALGORITHMAN
- 针对基于最小二乘法的ICP 曲面匹配算法难以处理待比较曲面的局部大变形问题, 提出一种改进算 法。即采用遗传算法确定曲面初始相对位置以保证匹配优化结果为全局最优值, 利用ICP 算法匹配结果构造 偏差阈值, 以此阈值过滤点群后再以最小二乘法进行匹配处理, 消除局部大变形影响, 获得合理的变换矩阵。以此变换矩阵变换初始点群再进行误差计算, 从而获得理想的匹配结果-Least square method based on the ICP surface matching algorithm
BpTRAINING
- 自适应步长BP神经网络训练算法,采用最小误差和梯度下降法更新权值- BP neural network training anaysis, realized by using error feed back, gradient descent applied updating of synaptic weights
C_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
Matlab_bp
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-
BP
- 构建BP神经网络,源码。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。-BP neural network to build, source. BP network can learn and store a lot of input- out
lubanglssvm
- 基于鲁棒学习的最小二乘支持向量机及其应用 鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度, 但缺少标准支持向量机的鲁 棒性, 即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时, 会导致不稳健的估计结果, 提出了一种鲁棒 最小二乘支持向量机方法. 该方法在最小二乘支持向量机基础上, 通过引入鲁棒学习方法来获得鲁棒估计. 仿真分析 及某湿法冶金厂的应用实例验证了该方法的可行性和有效性.- Least squares support vector mac
mse
- 最小均方误差法实现数据分类,内带实验数据,直接运行出结果-MSE algorithm for data classification with the experimental data,Run directly to results
BP
- BP神经网络 它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。-BP neural network
SGA
- 用标准的遗传算法优化低通数字滤波器的参数,采用的方法是最小均方误差法,得到较为理想的滤波器的传递函数的系数。-Genetic algorithm using standard low-pass digital filter, the method used is the minimum mean square error method to obtain the ideal filter transfer function coefficients.
imdxv
- 最小均方误差等算法的MSE的计算,包括最小二乘法、SVM、神经网络、1_k近邻法,可直接计算得到多重分形谱。- Minimum mean square error MSE calculation algorithm, Including the least squares method, the SVM, neural networks, 1 _k neighbor method, It can be directly calculated multi-fractal spectrum.
fbebh
- 车牌识别定位程序的部分功能,最小均方误差(MMSE)的算法,AHP层次分析法计算判断矩阵的最大特征值。- Part of the license plate recognition locator feature, Minimum mean square error (MMSE) algorithm, Calculate the maximum eigenvalue judgment matrix of AHP.
pao_dh63
- 利用matlab写成的窄带噪声发生,最小均方误差等算法的MSE的计算,信号处理中的旋转不变子空间法。- Using matlab written narrowband noise occurs, Minimum mean square error MSE calculation algorithm, Signal Processing ESPRIT method.
BP网络
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法(梯度法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input layer)、隐层(hide layer)和输出层(outpu