搜索资源列表
混沌时序多步预测函数
- 混沌时序多步预测函数的MATLAB程序,对于研究混沌时间序列的朋友来说是个好程序-Chaos forecast sequential multi-step procedures MATLAB functions for research chaotic time series of friends is a good procedure
AOLMM
- 基于局域法多步预报模型的混沌时间序列预报模型,对多个典型混沌序列的仿真测试表明,本算法具有良好的多步预测精度和较好的抗噪声能力-based multi-step prediction model of chaotic time series prediction model, a number of typical chaotic sequence of simulation tests show that the algorithm has a good multi-step forecast
Volterraprediction
- 小数据量法求混沌吸引子最大Lyapunov指数的Matlab程序,参考文献:张家树.混沌时间序列的Volterra自适应预测.物理学报.2000.03-small data method for chaotic attractor largest Lyapunov exponent of Matlab procedures References : Zhang Shu. The chaotic time series Volterra adaptive prediction. Physics
Volterraprediction1
- 混沌时间序列的Volterra一步预测的Matlab程序-chaotic time series forecast Volterra step procedure Matlab
Logistic_chaos
- 产生Logistic混沌时间序列的matlab程序-have Logistic chaotic time series Matlab procedures
Henon_chaos
- 产生Henon混沌时间序列的matlab程序-have Henon chaotic time series Matlab procedures
Chens_chaos
- 产生chens混沌时间序列的matlab程序-have chens chaotic time series Matlab procedures
Duffing_chaos
- 产生Duffing混沌时间序列的matlab程序-have Duffing chaotic time series Matlab procedures
Lorenz_chaos
- 产生Lorenz混沌时间序列的matlab程序-have Lorenz chaotic time series Matlab procedures
Rossler_chaos
- 产生Rossler混沌时间序列的matlab程序-have Rossler chaotic time series Matlab procedures
anfists
- 使用anfists的sugeno-type对混沌时间序列预测。-the use anfists Sugeno-type of chaotic time series prediction.
chaos
- 这个事几个典型的混沌时间序列的生成程序,包括Rossler,Chen,Logistical,和Lorenz序列
Chaos_Prediction
- 混沌时间序列分析与预测源代码。具有产生混沌时间序列,求时延,求嵌入维,求关联维,求K熵,求Lyapunov指数谱,求二进制图形的盒子维和广义维,求时间序列的盒子维和广义维,混沌时间序列预测等项功能。
混沌时间序列预测的MATLAB源代码
- 混沌时间序列预测的MATLAB源代码,希望对大家有用,Prediction of chaotic time series of MATLAB source code, in the hope that useful
Prediction_RBF
- matlab编写的基于混沌时间序列的神经网络预测,包括一步和多步预测算法。-matlab prepared chaotic time series based on the neural network to predict, including step and multi-step prediction algorithm.
TimeSeriesPredictionUsingSupportVectorRegressionNe
- 为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生 成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很 好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN 应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的 理论和应用价值。-Ab
papersforPhaseSpaceReconstruction
- 混沌时间序列相空间重构方面的论文,重要研究了嵌入微和延迟时间选择的相关内容。-Chaotic time series phase space reconstruction papers on the importance of the embedded micro-and delay the timing of relevant content.
average-period-of-chaos
- 混沌理论学习资料-混沌时间序列的平均周期计算方法-Chaos theory learning materials- the average period of chaotic time series is calculated
Multi-step-prediction-of-chaotic
- Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network 协同进化递归神经网络的多步混沌时间序列预测-This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it
混沌时间序列关联积分求解
- 生成Lorenz时间序列,运用GP算法计算关联维数