搜索资源列表
PSO_synthesis.rar
- 粒子群优化算法用于天线阵列方向图综合,自己编写的源代码,使用标准粒子群优化算法,Particle swarm optimization algorithm for antenna array pattern synthesis, I have written the source code, using the standard particle swarm optimization algorithm
scripts
- 在一个任意的天线方向图下,利用遗传算法使其接近所给的理想天线方向图。这种方法已经在NASA和其他机构中所利用来制造航天器。这些程序是自动生成一个2.4GHz的微波天线,利用遗传算法和NEC2模拟工具,来实现优化天线。包括最初级的简单双极形天线,在这个基础上又设计了三维空间中两部分天线和三维空间中多部分天线。-In a partially random antenna layout, and use a genetic algorithm to evolve a better solution.
GArun
- optimization of antenna by using C-IE3d interface.
psobasedbroadbandarrayantenna
- pso based broad band antenna synthesis
xu
- 遗传算法对直线天线阵列方向图的综合,采用整数编码,跨代竞争选择策略-Linear antenna array genetic algorithm, a comprehensive pattern
Ant-colony-algorithm-based-on-complex-adaptive-ant
- Ant colony algorithm based on complex adaptive anti-jamming antenna
ANT2-M24LR-A_GERBER_FILES
- Gerber file an antenna the small size for the chip M24lr64
smartantennna_beamfoming
- 智能天线里面波束形成算法,包括lms,music-Beamforming algorithm for smart antenna inside, including the lms, music
10
- A Stair-shaped CPW-fed Printed UWB Antenna for Wireless Body Area Network
Smart-Antennas-for-Wireless-Communications
- smart antenna for Adaptive Signal Processing
Submarine-antenna
- 潛艇天線設計Submarine antenna Submarine antenna-Submarine antenna
antenna-selection-algorithms
- 天线选择技术能够的效地减小射频链路的成本和系统的复杂度, 同时又能保持MI M0系统的主要优点。本文首先对已有的经典的天线选择算法分别进行了介绍, 对其优缺点进行分析, 而后基于范数方法的思想, 提出一种新的天线选择算法。 该算法具有计算简单的特点, 通过仿真表明, 在接收天线 数目较大的时候, 其性能较范数算法有明显提高。-The effectiveness of antenna selection technology can reduce the cost of radio link
LFtunemeter
- Meter for Antenna Tuning
GA
- 稀疏天线阵的遗传算法优化的matlab程序-Sparse antenna array optimized GA matlab program
Adaptive-antenna-seminar-report-ME-2-modified1.ra
- adaptive smart antenna
das1
- beamforming based smart antenna syatem
Antenna_IWO_Code
- Antenna Optimization using IWO
rectangle-plane-antenna-array
- 运用遗传算法对不等幅不等距矩型平面阵列的最大相对旁瓣电平进行了优化 , 通过提出新的 自适应 变异算子改进了算法的收敛性能 , 良好的计算结果表明遗传算法是 目前求解此类问题的有效方法-Genetic algorithms applied to unequal amplitude equidistant rectangular planar array, the maximum relative sidelobe level is optimized by presenting a
ultra-low-sidelobe-pattern
- 基于对标准遗传算法中收敛依赖于初始群体选择的困难所作的分析,提出交替使用两种遗传繁殖操作 产生后代群体以摆脱收敛对初始群体选择的依赖. 对于超低副瓣线阵天线的方向图综合问题,建立了改进的遗传算法 优化模型.计算实例说明改进后的遗传算法其收敛不依赖于初始群体的选择,具有实际应用前景. -Difficulties by the analysis of convergence depends on the initial group selected based on the standa
GA-optimize-for-antenna-array
- 文章详细叙述了基于遗传算法的天线阵优化方法-Article details the antenna array based on genetic algorithm optimization method