搜索资源列表
DavidPeterman_C
- 问题描述: 虽然离开浦口了,但在浦口校区后山大家还都有印象吧,可你知道有一座小山在冬天下大雪的时候是可以滑雪的,SEU很喜欢滑雪,这并不奇怪, 因为滑雪的确很刺激,可是为了获得速度,滑雪区域必须向下倾斜,而且当你到底时不得不重新走到上面重滑。SEU想知道在这个区域中最长的滑坡。区域由一个二维数组给出。数组的每一个数字表示山坡上一个点的高度。 下面是一个例子: 一个人可以从一个点滑向上下左右相邻的四个点之一,当且仅当高度减小。在上面的例子中,一条可行的滑坡为24-17-16-
mani
- mani: MANIfold learning demonstration GUI by Todd Wittman, Department of Mathematics, University of Minnesota E-mail wittman@math.umn.edu with comments & questions. MANI Website: httP://www.math.umn.edu/~wittman/mani/index.html Last Modified by G
Sealrecognition
- 1、编制程序显示印章图像(24位真彩色位图); 2、读出位图中每一像素点的(R,G,B)样本值; 3、以RGB其中某两个(或三个)为坐标,取一定数量的图像点为分析样本,分析其坐标系中的分布; 4、采用本章学习的方法找到分类判别函数,对这些样本进行分类;(要求首先将印章与底纹区分,如有可能将印章、底纹、签字区分) 5、将分类后的结果标记到原始图像上,检查其效果。 -1, the preparation procedures showed that the seal image
r
- MATLAB+6.5辅助神经网络分析与设计-MATLAB+6.5 neural network-assisted analysis and design
e1071_1.5-19.tar
- 支持向量机(Support Vector Machine, SVM)是建立在统计学习理论的基础上较新的分类方法,有相对好的泛化能力,是目前最热门的分类方法之一。R的"e1071" 包提供了做SVM的函数-Support Vector Machine e1071
A-hybrid-least-squares
- A hybrid least squares support vector machines and GMDH approach for river fl ow forecasting-This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares supp
duoquanzhishengjingwangluo
- 应用多权值神经网络方法对静态手势进行识别, 对手势字母图像采用傅里叶描述子提取特征信息, 取低频信息成分构建成犯维特征向量, 并应用多权值神经网络的算法, 构建各类的神经元网络-W ith th e develo Pm en t of hu m an eom p uter intera etion te ehn olo盯, th e h as been b ased on an im P o rt a n t tas k fo r U r o n s diseu ssion
ye_ren_chuan_jiao_si_guo_he
- 对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。 答: 用M表示传教士,C表示野人,B表示船,L表示左岸,R表示右岸。-For N = 5, k ≤ 3, the missionaries and Savage problem solving production system components are described (given comprehensive database
MOEA-NSGA-II
- NSGA (No n- Do mina te d So r ting in Ge ne tic Alg o r ithms [5 ]) is a p o pula r no n-do mina tio n ba s e d g e ne tic a lg o r ithm fo r multi- o b je c tive o ptimiz a tio n. I t is a ve r y e ff e c tive a lg o r ithm but ha s b e e n g
6461110
- CFD 空间5阶WENO,时间3阶TVD R-K格式实例()
python基础数据分析实例
- 假设要分析的数据包括属性age。数据元组的年龄值为(按递增顺序)13、15、16、19、20、20、21、22、22、25、25、25、25、25、30、33、35、35、35、36、40、45、46、52、70。另外,假设一家医院用上述年龄属性对所选样本受试者的年龄和体脂数据进行测试,得到结果,并执行下列操作: 1、将上述数据保存在逗号分隔值文件中。 2、将逗号分隔值文件中的数据读入R中的变量。 3、年龄和脂肪百分比的平均、中等和标准差是多少? 4、这个时代的模式是什么?评论数据的形式(即双峰