CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 人工智能/神经网络/遗传算法 搜索资源 - cnn-attention

搜索资源列表

  1. CNN

    1下载:
  2. 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。(Convolution neura
  3. 所属分类:人工智能/神经网络/深度学习

  1. symbol_resnet

    1下载:
  2. RACNN注意力机制,细腻度图片分类。 RA-CNN由上到下用了3个尺度并且越来越精细,尺度间构成循环,即上层的输出作为当层的输入。RA-CNN主要包含两部分:每一个尺度上的卷积网络和相邻尺度间的注意力提取网络(APN, Attention Proposal Network)。在每一个尺度中,使用了堆叠的卷积层等,最后接上全连接层于softmax层,输出每一个类别的概率;这个是很好理解的,代码采用的网络结构是VGG的网络结构。(RACNN attention mechanism)
  3. 所属分类:人工智能/神经网络/深度学习

    • 发布日期:2020-02-07
    • 文件大小:2kb
    • 提供者:FuChason
搜珍网 www.dssz.com