搜索资源列表
bayes_bpnet
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。我们采用两种训练方法,即 L-M 优化算法(trainlm)
bys
- 采用贝叶斯正则化算法提高BP网络的推广能力。在本例中,将采用两种训练方法,即L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP网络,使其能够拟合某一附加有白噪声的正弦样本数据。-The use of Bayesian regularization algorithm for BP network to improve generalization ability. In this case, two types of training methods will b
BPcode
- matlab模拟BP网络,使用trainlm和traingd以及traingdx传递函数。-matlab simulation of BP network, the use of trainlm and traingd and traingdx transfer function.
biansulvshenjingwangluo
- 变速率的神经网络matlab程序,采trainlm 函数-Variable rate of neural networks matlab program, the mining trainlm function
Bayes-in-BP(code)
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正 则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Use Bayes to train BP network
twodimapproximationbp
- 单输出函数Y=SIN(X)逼近问题的bp程序:假设网络结构为3--2--1,输入维数M,共N个样本,一般输入不算层,输出算层- 激活函数: hardlim---(0,1),hardlims---(-1,1),purelin,logsig---(0,1),tansig----(-1,1) softmax,poslin,radbas,satlin,satlins,tribas 训练算法: 1.traingd,traingdm,traingda(variable l
BP_LM
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正 -Bayesian regularization algorithm to improve the generalization ability of BP network. In this example, we use two training methods, namely LM optimization algorithm (trainlm) and Baye