搜索资源列表
AugmentedLagrangianAlgorithms
- Augmented Lagrangian Algorithms 求解非线性最化的局部最优解 -Augmented Lagrangian Algorithms for solving nonlinear partial most of the optimal solution
TVAL3_v1.0
- 最新的基于压缩感知的TV重构算法,该算法重构图像质量很不错,并且速度很快-TV Minimization by Augmented Lagrangian and Alternating Direction Algorithms
lagrange
- 拉格朗日松弛法的机组组合程序,采用三节点算例-Lagrangian relaxation unit commitment program, the use of three-node example
Matlab
- 矩正实验室的源代码,包括牛顿迭代法 拉格朗日法 和其他的经典算法-Moment is the laboratory s source code, including the Newton iteration Lagrangian and other classical algorithm
matlab
- 包括牛顿法,拉格朗日法,LU分解法,100*100阶稀疏矩阵方程组的解法等-Including the Newton method, Lagrangian method, LU decomposition method, 100* 100 band sparse matrix equations of the solution, etc.
lagrange
- 用MATLAB编写的拉格朗日程序。希望对大家有用。-MATLAB prepared using Lagrangian procedures. Hope useful for all of us.
NIP
- matlab 7.0 以上版本提供了强大的优化工具箱,但在整数规划方面,只提供了bintprog()这个m文件以求解0-1整数规划,而对于一般的整数规划模型没有具体的算法提供。我们一般情况只是用最简单的分值定界思想编写matlab程序求解整数规划问题,但效率低下,如何利用求解整数规划的先进算法编写matlab程序提上日程,香港大学的李端和复旦大学编写的《Nonlinear Integer Programming》(非线性整数规划)为编写解决整数规划问题提供强大有效的算法,其中算法针对具体问题包括
Fast_Walsh_Hadamard_Transform
- 最小的增广拉格朗日并交替方向算法应用matlab实现- Minimization by Augmented Lagrangian and Alternating Direction Algorithms use matlab to implement
Langr_Newton
- Optimization: work for Lagrangian Newton algorithm. -Optimization for Lagrangian Newton algorithm.
main5_2
- 采用拉格朗日算法求解机组组合问题,采用的是5机系统-Lagrangian algorithm for solving unit commitment problem, machine system used is 5
shuzhifenxi
- 数值分析的实验,拉格朗日、分段线性、三次样条等-Analysis of the experiment, Lagrangian, piecewise linear, cubic spline, etc.
stl
- 实现拉格朗日差值计算的C++程序,结果输入到m文件中用于matlab计算。-Lagrangian difference calculated to achieve C++ program, the results for input to the m file matlab calculations.
SVM
- LSVM : Langrangian Support Vector Machine algorithm LSVM solves a support vector machine problem using an iterative algorithm inspired by an augmented Lagrangian formulation
primal_svm
- Primal SVM code using the Lagrangian Theory
NEWTLAGR
- 功能: 用牛顿-拉格朗日法求解约束优化问题-Function: Newton- Lagrangian method for solving constrained optimization problems
LAGSQP
- 功能: 用基于拉格朗日函数Hesse阵的SQP方法求解约束优化问题:-Function: Hesse matrix based on Lagrangian SQP method for solving constrained optimization problems:
RateDF
- 信息率失真函数的迭代计算 信息率失真函数的迭代计算,迭代精度取为10^(-7) 在信源的输入概率分布Pa和失真矩阵d已知的条件下求出信息率失真函数 函数说明: [Pba,Rmin,Dmax,Smax]=RateDF(Pa,d,S) 为信息率失真函数 变量说明: Pa:信源的输入概率矩阵,d:失真矩阵,S:拉氏乘子 Pba:最佳正向转移概率矩阵, Smax:最大拉氏乘子 Rmin:最小信
SQP
- 实现基于拉格朗日函数的hesse矩阵的SQP方法以及基于修正Hesse矩阵的SQP方法-Hesse matrix of the SQP method based on the Lagrangian function and the SQP method based on correction Hesse matrix
Lagrangian-relaxation
- 拉格朗日松弛,将目标函数中造成问题难的约束吸收到目标函数中,并保持目标函数的线性,使问题更加容易求解。-Lagrangian relaxation
Lagrangian multiplier method
- 通过matlab实现拉格朗日乘子法。学习经典优化方法,熟悉matlab语言。(Realize the Lagrangian multiplier method by matlab. Learning classic optimization methods, familiar with matlab language.)