搜索资源列表
BPBPzui
- 通过在MATLAB平台上比较BP神经网络的三种训练方法-trainbr traingdm trainlm.并且网络中加入噪音!-through MATLAB platform comparison BP neural network training method for the three-trainbr traingdm trainlm. Network and add noise!
11
- L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr)
exampls
- This file contains examples of training by using trainlm algorthim
BPNN4_2
- load training.txt load TrainOut.txt load validation.txt load ValOut.txt load testing.txt load TestOut.txt INPUT=[training validation testing] OUTPUT=[TrainOut ValOut TestOut] net=newff(INPUT,OUTPUT,200,{ tansig , purelin }, trainlm )
trainlm
- 采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr)-Using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (trainbr)
shenjingwangluo
- T=[1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1] 输入向量的最大值和最小值 threshold=[0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1] net=newff(threshold,[31 3],{ tansig , logsig }, trainlm ) 训练次数为1000,训练目标为0.01,学习速率为0.1
BP_futures
- 【神经网络BP预测期货收盘价】:用开盘价、最高价、最低价、收盘价数据预测未来几天的收盘价,训练方法为trainlm。数据只需要一个txt文件,可以自己网上下载,TB或文化软件提取,本人提供了一份txt的开高低收文件。-[BP neural network to predict futures closing price]: with open, high, low, close price data to predict the closing price of the next few day
bpNeural-network-instance
- 例1 采用动量梯度下降算法训练 BP 网络。 例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network. Example 2 uses the Bayesian