搜索资源列表
PAC--Datamining
- PCA降维算法应用大数据挖掘中,在大数据环境下实现数据的降维,可按需要自行修改代码-PCA dimensionality reduction algorithm in data mining, in the big data environment for data dimension reduction, according to need to modify the code itself
mySVD
- svd算法可用于降维,也可用于pca的分解中。-SVD algorithm can be used to complete the PCA algorithm. It can also be used to realize dimensionality reduction.
降维code
- 了解降维、特征筛选等基本原理 掌握PCA、SVD、LAD和NMF等算法实现及应用(Understand the basic principles of dimensionality reduction and feature selection Master the algorithm implementation and application of PCA, SVD, lad and NMF)
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime