搜索资源列表
recommender-
- Collaborative Filtering,基于Collaborative Filtering,建立主动为用户推荐商品的推荐系统。实现参考协同过滤算法或它的优化,实现并改进算法,计算出每个客户对未购买的商品的兴趣度,并向客户主动推荐他最感兴趣的N个商品。实验数据可以从MovieLens.com下载。要求使用至少10,000不同用户的数据,至少1000个不同的movie。-Collaborative Filtering,Based Collaborative Filtering, the in
zishiyingguolvfa
- 自适应过滤法是根据一组给定的权数对时间数列的历史观察值进行加权平均计算一个预测值,然后根据预测误差调整权数以减少误差,这样反复进行直至找出一组“最佳”权数,使误差减少到最低限度,再利用最佳权数进行加权平均预测。-Adaptive filtering method is based on the number of a given set of rights to compute a weighted average of the predicted value of historical tim
user-based
- 使用的数据集是BX-CSV-Dump,基于用户的协同过滤,有详细代码注释-英语 Data sets used are BX-CSV-Dump, user-based collaborative filtering, a detailed code comments
CF
- 这是用matlab写的协同滤波算法主程序,程序简单,易于理解。可以应用于推荐系统-It is used to write collaborative filtering algorithm matlab main program, the program is simple and easy to understand. Recommended system can be applied。。。。。。
cf_matrix-decomposition
- 现在比较常用的一种给予举证分解的协同过滤算法,用于个性化推荐-Now more commonly used as a collaborative filtering algorithm decomposition give evidence for personalized recommendation
cf
- 现在比较常用的一种传统的协同过滤算法,用于个性化推荐 最基础的-Now more commonly used as a traditional collaborative filtering algorithms for the most basic personalized recommendation
usercf
- 基于用户的协同过滤算法(Python实现) ,很好的学习协同过滤算法的资料-User Based Collaborative Filtering
Recommender
- 基于MovieLens数据,通过计算余弦相似度,Python语言构建的一个简单协同过滤推荐系统,并给出RMSE等测评结果-Based MovieLens data by calculating the cosine similarity, Python language to build a simple collaborative filtering systems, and the like are given RMSE uation results
Kalman
- Kalman算法示例,java实现通过Klman对GPS点进行过滤,实现平滑-Kalman algorithm example, trajectory filtering by Kalman filtering useing java
CF
- Python实现协同过滤算法,即Collaborative Filtering(CF),数据集为MovieLens电影推荐和书籍推荐数据集-Python implementation of collaborative filtering algorithm, namely Collaborative Filtering (CF), the data set is recommended MovieLens movie and book recommendations datasets