搜索资源列表
1-2
- some of good paper about the PF (particle filtering)
LFM
- 针对贝叶斯滤波过程中存在的目标跟踪问题,提出几种典型的贝叶斯滤波方法,如EKF, UKF, PF和UPF 等,基于这些方法所构 建的框架,对它们进行性能测试和比较,并在非线性环境下,讨论这些方法的特点,仿真实验结果表明,在非线性非高斯环境下,UPF 方 法的性能是最优的。 -According to the bayesian filtering occurred in the process of target tracking problem, this paper puts forw
PF-Matlab--simulated-software
- 比较了粒子滤波、kalman滤波和粒子滤波的性能不同,通过实例进行了仿真。- the different between UKF KF and PF basedon Matlab simulated software.give some samples about the case.
lmd
- 局部均值分解是由Smith提出的一种新的非线性和非平稳信号分析方法。由于LMD是依据信号本身的信息进行自适应分解的,产生的PF分量具有真实的物理意义,由此得到的时频分布能够清晰准确地反映出信号能量在空间各尺度上的分布规律。-Local mean decomposition is a new nonlinear and non-stationary signal analysis method proposed by the Smith. Since LMD information is base
PARTICLE
- 粒子滤波 PF( Particle Filtering) 是在 贝叶斯滤波框架下基于 Monte Carlo 采样的统计滤波方法,可解 决非线性、非高斯的滤波问题,声源跟踪就属于这类问题。近年 来,基于粒子滤波的声源跟踪算法已成为研究的热点。 -he real acoustic data recorded in a typi- cal meeting room using a small-scale microphone array is used for tracking
PF--MATLAB
- 用于无线资源分配中,它既能保证吞吐量,又能保证公平性。-Radio resource allocation, it can guarantee throughput, but also to ensure fairness.
EKF UKF PF EPF UPF性能比较
- 程序包含 EKF UKF PF EPF UPF 的性能比较,里面是比较简单的调用,并对其性能做了简要的对比。(The program contains the performance comparison of EKF UKF PF EPF UPF, which is a relatively simple call, and makes a brief comparison of its performance.)