搜索资源列表
Manisha
- It is a java implementation of Expectation Maximization algorithm that can be used for clustering objects in data mining
HLSeg_JAVA_Example
- 中文分词 支持对输出颗粒的控制,可以输出普通颗粒与用于检索的小颗粒;同时输出词串所在句号、段号、词号、词性等信息。 关于分词输出颗粒,我们认为各种应用对分词要求的颗粒度是不同的. 比如自动分类、关键词抽取比搜索需要的分词颗粒度要大, 因为这样表示文本语义特征时效果会更好, 而检索有一个查全率的要求, 就需要把分词单位做的更为细致, 不然就会造成漏查。 海量系统现在提供了两种颗粒的规则, 其中, 默认的为大颗粒接口, 主要用于自动分类、信息挖潜、机器翻译、语音合成、人工智能等领域,
EMSCluster
- Expectation-Maximization Algorithm for Clustering numerical data
LouvainAlgorithm
- 为了降低算法的时间复杂度,Vincent Blondel等人提出了另一种层次性贪心算法(BGLL算法)。该算法包括两个阶段,这两个阶段重复迭代运行,直到网络社区划分的模块度不再增长。第一阶段合并社区,算法将每个节点当作一个社区,基于模块度增量最大化标准决定哪些邻居社区应该被合并。经过一轮扫描后开始第二阶段,算法将第一阶段发现的所有的社区重新看作节点,构建新的网络,在新的网络上迭代的进行第一阶段。当模块度不再增长时,得到网络的社区近似最优划分。 算法的基本步骤如下: 1).初始化,将每个节点划