搜索资源列表
基于EKF的多MEMS传感器姿态测量系统.caj
- 摘 要:姿态信息是飞行控制中最关键的参数之一,因此姿 态测量成为飞行控制系统首要解决的问题。利用多MEMS 传感器研制了一种微型姿态测量系统。利用三轴MEMS加 速度计和三轴MEMS陀螺数据,由方向余弦矩阵的姿态表 示形式推导了扩展Kalman滤波方程,解算出飞行器的俯仰 角和横滚角;设计专家系统判断飞行器的运动状态,并根据 该状态调整滤波算法中的测量噪声矩阵,使系统可同时满足 静态情况和动态情况的使用;利用空速和高度数据对俯仰 角进行修正,利用GPS解算航向角。将实验结果与国外最新 的商用自动
xietongdingwei
- 协同定位是多平台编队中的关键问题之一 是实现无人机~ 舰艇编队等定位控制的基础G 从信息融 合的角度研究了编队协同中的导航定位问题 提出了一种新的协同定位算法G 推导了二维情况下 基于最近邻准 则确定伪测量和相伴误差协方差矩阵的模型G 仿真分析表明 该算法可以稳定地完成己平台运动要素的估计-Co-location is one of the key issues in the formation of multi-platform UAV ~ vessel formation pos
CSlunwen
- 关于压缩感知理论的测量矩阵和重构算法分析!-Measurement matrix and reconstruction algorithm about CS
A-global-reconstruction-model
- 已有的基于分块压缩感知的图像重构模型采用相同的测量矩阵以块 ×块的方式获取数据,解决了传统CS方法中测量矩阵所需存储量较大的问题,但由于采用分块重构,没有考虑 到图像的全局稀疏度,出现了大量的块效应。-Current image reconstruction models using block compressed sensing
Short-duration-power_CS
- 根据压缩传感(Compressed Sensing,cs)N论,首次提出了短时电能质量扰动信号的压缩采样方法,该方法突破了奈奎斯特采样频率的限制,实现了低于奈奎斯特采样频率的低速率采样。文中对比分析了CS理论与传统采样理论,研究了cS短时电能质量信号压缩采样的实现方法,包括:测量矩阵的构建、稀疏基的选取和电能质量信号快速贝叶斯匹配追踪重构算法(FBMP)-Compressed sensing ( Compressed Sensing , cs ) N theory , first propose
61
- 提出了一种结合SVD的小波变换方法,对其在外弹道测量数据中的野值剔除进行了研究。对观测数据进行小波分解,将小波分解后的近似分量和细节分量组合实现相空间重构,作为SVD方法的输入观测矩阵,根据奇异 熵增量准则,对奇异值进行筛选,根据SVD逆变换重构原信号。这一方法克服了Hankel矩阵相空间构建方法数据 端点失真问题。以小波分解后分量重构的相空间可以满足正交性,进一步提高了SVD进行数据降噪和野值检测的精度。仿真数据和试验数据处理结果证明了这一方法的有效性。-Proposed a meth
cs
- 基于压缩感知当中关键技术测量矩阵的设计的相关文献,有利于对测量矩阵设计的学习-Among the relevant literature on compressed sensing techniques to measure key matrix design is conducive to learning measurement matrix design
shuizhunwang
- 有关误差理论与测量平差的水准王平差的软件,包含矩阵运算函数-Standards related to the theory and measurement error adjustment of Ping poor software
tsiligiani.pdf
- Construction of Incoherent Unit Norm Tight Frames With Application to Compressed Sensing:构造不相干紧框架的压缩感知测量矩阵的最新构造方法的文章,其中的不相干很难做到,作者提供的方法解决了这一问题,值得一看-Construction of Incoherent Unit Norm Tight Frames With Application to Compressed Sensing
estimation-extended-Kalman-filter
- 针对感应电机扩展卡尔曼滤波器转速估计中难以取得卡尔曼滤波器系统噪声矩阵和测量噪声矩阵最优值的问题,提出了一种基于改进粒子群算法优化的扩展卡尔曼滤波器转速估计方法。算法通过融合遗传算法和粒子群算法的优点,采用可调整的算法模型对粒子群算法进行改进,将改进的粒子群算法对扩展卡尔曼滤波器中的系统噪声矩阵和测量噪声矩阵进行优化处理,将优化后的卡尔曼滤波器应用于感应电机转速估计。- Extended K
Random-Matrix-
- 电网暂态分析是保证电网稳定运行的重要手段。随着电网广域测量系统(wide-area management system, WAMS)的发展,电网形成了具有时空特性的高维海量运行数据。传统的电网暂态分析采用物理模型,用严格的数学公式关联维度之间数据,这种模型不能充分利用海量电网运行数据,造成资源浪费。从数据驱动的角度,首先分析 WAMS 数据的应用情况,考虑电网运行数据特点建立数据模型。然后利用随机矩阵理论(random matrix theory, RMT) 建立平均谱半径(mean spect
使用加权辅助变量的被动发射源定位
- 由于测量矩阵和方位噪声之间的相关性,我们已知的发射极定位的线性最小二乘算法,如伪线性估计器,具有较大的估计偏差。本文提出了一种新的基于闭型的发射器定位算法,该算法克服了这种偏倚,利用了比定位估计的辅助变量。通过计算机模拟,新算法的性能优于伪线性估计器,同时具有与计算成本更高的极大似然发射器相同的性能。(Because of the correlation between the measurement matrix and azimuth noise, we have known that th
压缩感知
- 本文分别以稀疏基有离散余弦变换基(DCT)和快速傅立叶变换基(FFT)做为稀疏基,高斯随机矩阵、部分哈达玛矩阵为测量矩阵,L1范数、正交匹配追踪算法(OMP)为重建算法进行压缩感知算法实现。(In this paper, DCT and FFT are used as sparse basis, Gauss random matrix and partial Hadamard matrix are used as measurement matrix, L1 norm and OMP are u