搜索资源列表
单纯形和人口迁移的混合全局优化算法
- 摘要:针对基本人口迁移算法具有易早熟和精度不高等缺陷,利用人口迁移算法随机产生的点采用单纯形法进行优化,提出了 一种基于单纯形法和人口迁移算法的混合全局优化算法。通过典型的测试函数Shaffer,验证了改进后算法的性能,并与10 种类型 的粒子群优化算法进行比较,结果表明,该文算法能获得比较好的解,收敛成功率高达100%。
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
23445455
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
466676
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
5346363636
- :针对粒子群算法进行多极点函数优化时 存在的局部极小点和搜寻效率低的问题,引入了小 生境的思想到粒子群算法中,以粒子的最好位置为 中心,粒子的最好的个体解对应的适应值为半径建 立圆形小生境。stretching 技术,其次对子群体采用解散策略,即当在子群体中找到一个极值点后把子群体解散回归主群体,最 后设置子群体创建时的半径阈值,避免子群体半径过大。该算法解决了标准的NichePS0算法在处理 多峰函数时,极值点的个数依赖于子群体个数及极值点容易出现重复、遗漏
psoalgorithms
- 求解0-1二次规划的粒子群算法 先将离散的0-1变量约束转化成了不光滑方程的约束,再用磨光函数方法对其光滑化。最终,把原来的数学模型转化为可微的非线性规划问题。最后,粒子群优化算法求解-0-1 first discrete particle swarm algorithm for solving 0-1 quadratic programming variable constraint transformed into smooth equations and constraints, it
pso
- 子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。-Subgroup of particle swarm optimization algorithm is composed by a number of particles, each particle' s position represents to optimize the p
求解矩阵特征值的改进PSO算法
- 求解矩阵特征值的改进PSO算法:为了改进粒子群算法在求解矩阵特征值时只能根据矩阵特征值范围逐一求解特征值的现状提出了一种改进的粒子群 算法改进的粒子群算法采用寻找到一个特征值后,适当改变适应值函数的策略,使搜索区域远离已寻找到的特征值,继续寻找 其他的特征值,如此反复,直到寻找到所有的特征值为止利用四个不同类型的矩阵求解特征值进行仿真,实验结果也验证了算 法的实用性和有效性
linxin
- 针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法。-Abstract:Using quantum-behaved particle swarmoptimization (QPSO) to handle complex functions with high-dimension has the problems of low convergence speed and sensitivity to local convergence
dsad
- :智能算法如粒子群算法已被应用于PID控制器的参数优化,以弥补传统优化方法容易产生振荡和较大超调量 的不足,但是粒子群算法存在易于早熟的缺点,在分析量子粒子群算法的基础上,提出了使用量子粒子群算法优化PID控 制器的参数。为了兼顾控制系统的各项性能指标,根据控制器的实际要求对各项指标进行加权作为算法的目标函数,对 PID控制器进行多目标寻优。通过2个传递函数实例,分别使用z—N、粒子群算法和量子粒子群算法进行了PID控制器 参数优化设计,并对结果进行了分析。-Abstract:H
matlab2
- 实现对于一个复杂数序函数的matlab求极值粒子群算法。很有实际使用意义-Seeking extremum particle swarm algorithm matlab function for a complex number sequence. Very practical significance
MATLABchengxusheji
- 阐述了粒子群算法的基本原理,探讨了在MATLAB环境中实现粒子群算法的编程方法,构建粒子群算法工具箱函数,通过仿真示例验证了该方法的有效性,表明它能够对函数进行全局优化。-Expounded the basic principles of particle swarm optimization to explore particle swarm algorithm in MATLAB programming method to construct the particle swarm optim
Particle-Swarm-Optimization
- 水库群调度的粒子群优化原理ppt介绍,包括原理目标函数约束等具体内容-Particle swarm optimization principle reservoir group scheduling ppt presentation, including the principle of objective function constraints specific content
multifunction_optimization_use_pso
- 多峰值函数优化中,基本粒子群算法进化后期收敛速度较慢,提出一种具有可控速度因子的改进粒子群算法.-Multimodal function optimization, PSO late evolutionary convergence is slow, with a controllable speed improvements proposed particle swarm optimization factors.
GA-PSO
- 粒子群算法与遗传算法的联合的GA-PSO算法运用,带有测试函数-Joint GA-PSO algorithm using particle swarm optimization and genetic algorithm with test function
pso
- 粒子群算法,非常强大的智能寻优算法。可以计算不同适应函数。-Particle Swarm Optimization, a very powerful intelligent optimization algorithm. Different fitness functions can be calculated.
chapter3
- 遗传算法、粒子群算法优化BP神经网络-非线性函数拟合-Genetic algorithm and particle swarm optimization for BP neural network nonlinear function fitting
粒子群优化算法
- 粒子群优化(PSO)是一种进化计算技术(进化计算)。 捕食鸟行为的研究。粒子群算法(PSO)的基本思想是通过群体中个体之间的协作和信息共享找到最优解。 粒子群优化算法的优点是它简单且易于实现,没有多个参数。目前,它已广泛应用于函数优化、神经网络训练、模糊系统控制等遗传算法中。(The particle swarm optimization (PSO:Particle swarm optimization) is an evolutionary computing technology (Ev
基于神经网络和粒子群
- 用BP神经网络和粒子群算法的优化,主要针对的是函数最大值和最小值的寻找。