搜索资源列表
1
- 一种图像检索中纹理特征提取的方法。本文介绍了基于Gabor 滤波器和Gabor 小波变换提取纹理特征的分析方法, 以及对Gabor 小波进行了高斯归一化以提高对图像检索的速度和准确度。-An image retrieval texture feature extraction methods. This article based on Gabor filters and Gabor wavelet transform to extract texture feature analysis me
Texture_Classification_With_Linear_Regression_Mode
- 基于小波分析,使用线性回归模型来进行纹理的识别和分类,是08年IEEE TRANSACTION的经典文献。-Based on wavelet analysis, the use of linear regression model for texture identification and classification, 2008 IEEE TRANSACTION are classic literature.
xx
- 本文详细描述了基于小波包的纹理图像去噪方法: 噪声对图像的后续处理影响较大,常用的去噪方法虽然可以去除变化平缓的图 像中的噪声,但对细节较多的纹理图像的去噪效果却不太理想, 文中基于信号和噪声在小 波分解中呈现出来的不同特性,提出了一种新颖的小波包去噪算法, 采用该算法对纹理图 像进行最优小波包分解,并计算每个子频带的两个范数,然后根据范数值区分信号和噪 声,从而达到去除噪声的目的, 实验结果表明,该算法对皮革图像具有较好的去噪效果,不 仅可以去除纹理图像中的大部分
Novel-approach-for-texture
- 为提高基于内容的图像检索系统中纹理特征提取的有效性,提出了又一种纹理图像检索方法。该方法 利用非下采样 Contourlet变换对图像进行分解, 提取不同子带和不同方向变换系数矩阵的均值和方差为特征向量, 作 为数据库中纹理图像的索引,并利用两种不同的相似度函数计算图像之间的相似度,建立了一套基于示例查询图像 的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比, 该方法不仅能降低特征向量维数,而且能取得 更高的检索准确率和检索速度。-To i ncrease t he
Texture-Segmen-ta-t-ion-withWavelet
- 为了提高纹理图象分割的边缘准确性和区域一致性以及降低分割错误率, 提出了一种基于小波变换的利 用特征加权来进行纹理分割的方法. 该方法包括特征提取、预分割和后分割 3 个阶段, 其中, 特征提取在金字塔结 构小波变换的基础上进行 预分割利用均值聚类算法来对原始图象进行初步的分割 后分割则根据预分割的结果 对特征进行加权, 然后利用最小距离分类器来实现图象的最后分割. 与传统的方法相比, 该方法在分割错误率、边 缘准确性以及区域一致性等方面均有明显的改善-To imp rove t
WignerVille2014
- 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extractio
Marx20110509
- 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extractio
cg09000773
- 基于小波变换的图像纹理特征提取方法及其应用-A Method of Image Texture Feature Analysis Based on Wavelet Decomposition and its Application
cd
- 是关于小波变换的程序,图像的边缘和纹理识别,分离图像高低频信息,十分有帮助。-It is about science.
multiscale
- 按照二维函数的特点和视觉机制,提出了用来捕捉纹理基元的纹理检测器函数,基于纹理检测器和扩展的小波变换,提出了基于能量分解的影像纹理多尺度分析方法,并按照神经动力学的侧抑制和端点抑制等理论,实现了对多尺度纹理特征的融合,这一多尺度分析方法直接将影像纹理能量在时间一尺度空间分解,包含了相位信息,避免了基于线性变换多尺度分解引起的能量与相位分离,为纹理分析提供了一个层次性的框架,有效提高了纹理的识别能力。-According to the characteristics of two-dimensio
Image-retrieval
- 小波变换 颜色特征 纹理特征 图像检索 多尺度 复小波理论 -Wavelet transform color texture image retrieval feature multi-scale complex wavelet theory