搜索资源列表
Markov_segment
- 图像分割中的马尔可夫随机场方法综述,中国图象图形学报上面的文章,2007年-Image segmentation of Markov random field methods, the Chinese Journal of Image and Graphics of the above articles, 2007
ApplicationsandDevelopmentofExpertSysteminWastewat
- 针对污水处理系统的多变量、非线性、时变性与随机性等特点,介绍了专家系统的结构和特点及其在污水处理领域的应用研究现状,分析了其存在的问题。结果表明,国外专家系统发展迅速,并且应用领域遍及污水处理系统的各个方面,国内尚处于起步阶段。最后提出了在污水处理领域专家系统应用研究的发展方向。-Sewage treatment system for multi-variable, nonlinear, time variability and random other peculiarity of the s
Statistical_mechanics_of_complex_networks.pdf
- Complex networks describe a wide range of systems in nature and society. Frequently cited examples include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of routers and computers connected by physical links
Learning-depth-information
- 本文提出一种基于高斯- 马尔科夫 随机场模型,首先通过图像采集及激光测距系统,采集大量图像及其相匹配的深度信息图,在 人类视觉系统基础上,提取图像特征,通过训练完善模型,并应用于新采集图像上-This paper presents a Gauss- Markov random field model, first by image acquisition and laser ranging system, collecting a large number of images to ma
PatternRecognition_Ch7_Markov
- this power point is about markov random field
Strong-Markov-Random-Field-Model
- Strong Markov Random Field Model
based-on-random-walk
- 随机游走在计算机学科的信息检索领域已经得到了成功的应用,现在正被 越来越多地应用到机器学习和数据挖掘等领域。在此背景下,我们提出图上的 随机游走学习,创造性地将随机游走作为一项基本技术,用于改善传统的有监 督学习,半监督学习和无监督学习中的困难问题-Random walk has been successfully applied in computer science, information retrieval, is now being increasingly applied
Simulation-visual-mechanism
- 提出一个小波域多尺度马尔柯夫随机场模型用于模拟视觉系统在图像分割中的若干功能。针对人类视觉系统具有特征检测器、等级层次性、双向连续性、学习机制等功能,对输入场景,该模型用小波变换提供该场景图像的稀疏表示,模拟特征检测器功能 用金字塔结构模拟等级层次性 用两类信息流模拟双向连接性,分别刻画自底向上的输入图像特征提取过程以及自顶向下的反馈过程 用迭代过程模拟学习机制 采用多尺度马尔柯夫随机场模型实现图像分割。-Put forward a wavelet domain multi-scale mark
Training-an-Active-Random-Field-for-Real-Time
- Many computer vision problems can be formulated in a Bayesian framework based on Markov Random Fields (MRF) or Conditional Random Fields (CRF).
log6789
- There are two main contributions in this paper. The first is to propose a joint random field (JRF) model that extends CRF by introducing auxiliary latent variables to characterize visual scene over time and enhance moving object detection in vide
Markov-random-field
- 讲解马尔科夫随机场的基本理论,对随机场的性质进行详细介绍,完善理论 -Markov random field to explain the basic theory, along with details of the nature of the airport, perfect theory
modDRF.pdf
- In this paper we present Discriminative Random Fields (DRF), a discrim- inative framework for the classification of natural image regions by incor- porating neighborhood spatial dependencies in the labels as well as the observed data. The proposed mo
FCM-using-MRF-code
- implementation of Fuzzy C Means clustering with Markov Random Field
MRF
- Markov Random Field Optimisation
Probabilistic-Graphical-Models---Markov-Random-Fi
- Blobal minimization for Markov Random Field (/Markov+Random+Field)
fichier1
- Image pansharpening with Markov Random Field and Simulated Annealing
Markov_Random_Fields
- Introduction to Markov Random Field
Finite-field---Wikipedia--the-free-encyclopedia.r
- BCH (Bose – Chaudhuri - Hocquenghem) Codes form a large class of multiple random error-correcting codes.
2012.李航.统计学习方法
- 《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文
Bidirectional LSTM-CRF Models for Sequence Tagging
- In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirec