搜索资源列表
sierpinski
- IT IS FOR MATLAB PROJEST
APS-MAG-Oct-1999
- The theoretical foundation for the study of deterministic hctal arrays is developed in Section 3 of this article. In particular, a specialized pattern-multiplication theorem for fractal arrays is introduced. Various types of fractal array confi
fractal-use
- 分形的练习一 ①Koch曲线 用复数的方法来迭代Koch曲线 clear i 防止i被重新赋值 A=[0 1] 初始A是连接(0,0)与(1,0)的线段 t=exp(i*pi/3) n=2 n是迭代次数 for j=0:n A=A/3 a=ones(1,2*4^j) A=[A (t*A+a/3) (A/t+(1/2+sqrt(3)/6*i)*a) A+2/3*a] end plot(real(A),imag(A)) axis([0 1 -
Sierpinski-Sponge
- 这是在Visual C++下开发的MFC小程序,通过输入阶数,从而绘制Sierpinski海绵。-This small program is developed in Visual C++ MFC, by entering the order, so as to draw the Sierpinski sponge.
3D-Sierpinski-gasket
- Program to recursively subdivide a tetrahedron to from 3D Sierpinskigasket. The number of recursive steps is to be specified by the user
EXP1
- Write a complete program using the following codes to draw a Sierpinski gasket.
MATLAB--yuxiang
- MATLAB环境下图像分形维数的计算。MATLAB对分形图像的处理简单、方便,通过科赫曲线、谢宾 斯基填料等有规分形图形分形维数的计算表明该方法计算出的结果准确、可靠. 对大气颗粒物的 分形维数的计算表明,不同不规则程度的颗粒物有不同的分形维数,可以通过颗粒物分形维数的 计算分析颗粒物的来源和输运过程-Theresults showedthat theprocessingof fractal images byMATLABis simpleandconvenient , andt
Estimation-of-Fractal-Dimensions
- 利用MATLAB 的图像处理和数值计算功能,对大气可吸入颗粒物的场发射电镜 (FESEM)图像进行处理,得到颗粒物边界的二值图像;编制MATLAB程序,统计一系列以不同 像素数量为边长的正方形块覆盖二值图像时的个数,根据像素数量和正方形块个数之间的关系, 确定图像的计盒维数。结果表明:MATLAB对分形图像的处理简单、方便,通过科赫曲线、谢宾 斯基填料等有规分形图形分形维数的计算表明该方法计算出的结果准确、可靠。对大气颗粒物的 分形维数的计算表明,不同不规则程度的颗粒物有不同
Sierpinski
- this my first test which runs Sierpinski code. it s so easy and quick in c++ with opengl-this is my first test which runs Sierpinski code. it s so easy and quick in c++ with opengl