CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 文档资料 搜索资源 - sparse regression

搜索资源列表

  1. s

    0下载:
  2. Sparse Partial Least Squares Regression for On-Line Variable Selection with Multivariate Data Streams
  3. 所属分类:Communication

    • 发布日期:2017-11-20
    • 文件大小:507.3kb
    • 提供者:sengottaiyan
  1. Image-reconstruction_CS

    0下载:
  2. 合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数- Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image recon
  3. 所属分类:Communication

    • 发布日期:2017-11-15
    • 文件大小:399.48kb
    • 提供者:lili
  1. LASSOaLARSa-SPCA

    1下载:
  2. Abstract There a number of interesting variable selection methods available beside the regular forward selection and stepwise selection methods. Such approaches include LASSO (Least Absolute Shrinkage and Selection Operator), least angle regression (
  3. 所属分类:software engineering

    • 发布日期:2017-03-29
    • 文件大小:172.58kb
    • 提供者:yangcan
  1. RLS-WEIGHTED-LASSO

    0下载:
  2. 介绍了LASSO算法,他是是一种很好的稀疏信号参数估计方法。-The batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of inter- est emerging in various applications, where observations adhere to parsimonious
  3. 所属分类:Project Manage

    • 发布日期:2017-03-29
    • 文件大小:97.96kb
    • 提供者:wentao
  1. SPP-master

    0下载:
  2. 稀疏投影保持降维算法,用于高维度数据降维分类和回归的算法-Projections remain sparse dimension reduction algorithm for high-dimensional data dimensionality reduction classification and regression algorithm
  3. 所属分类:software engineering

    • 发布日期:2017-05-05
    • 文件大小:14.41kb
    • 提供者:白玉龙
  1. A novel illumination-robust local descriptor

    0下载:
  2. Introduce a novel illumination-robust local descr iptor named Sparse Linear Regression Binary (SLRB) descr iptor.
  3. 所属分类:行业发展研究

    • 发布日期:2017-11-26
    • 文件大小:1.46mb
    • 提供者:x50558413
  1. Hierarchical sparse priors for regression models

    1下载:
  2. Sparse regression problems, where it is usually assumed that there are many variables and that the effects of a large subset of variables are negligible, have become increasingly important. This paper describes the construction of hierarchical pri
  3. 所属分类:报告论文

搜珍网 www.dssz.com