搜索资源列表
一种基于图像显著特征点的检索算法
- 摘要提出一种基于图像显著特征点的检索算法.首先给出一种具有一定自适应能力的显著特征点的提取算 法,即采用改进的图像的块逆概率差模型来提取原图像的块逆概率差图像(DBIP图像).在此基础上,根据BDIP图 像中像素的分布特点来提取图像的显著特征点.然后以它们为线索,把图像的形状特征和空间颜色分布特征有机 结合起来进行检索.该算法不仅克服利用兴趣点检索时的缺点,而且降低传统显著点提取算法的复杂度,又包含一 定的形状信息,具有较好的检索效率.实验结果表明,该算法是有效的. 关键词基于内容的图
基于深度学习的机器人抓取仿真训练技术研究
- 机器人智能抓取是实现机器人智能化的重要一环。由于待抓取物品形状、尺度的多样性以及环境因素的影响,抓取任务很难用准确的数学公式求解。以往的研究多是借助计算机视觉、机器学习等相关技术,虽有一定的效果,但智能化程度还是较低。2012 年后深度学习技术逐渐崛起,因为其良好的特征提取表现被应用在了各个领域,如医学图像、自动驾驶、数据分析等,近年来国外学者开始将这项技术应用到机器人抓取,并取得了一定的成果。