搜索资源列表
rldw
- 本文对几何模型匹配方法进行了研究,提出了一套完整的人脸定位算法。在预处理部分,采用了特别的增强人脸特征与脸部皮肤之间对比度的方法及局域取阈值二值化方法,改进了预处理的效果。在图像分割部分,实现了经典的分合算法,并且使用成组算法改进了分合的效果。在人脸匹配部分,实现了基于眼睛和嘴的几何模型匹配,并对评价函数的构造进行了研究-geometric model of this matching method for the study and submit a complete set of facia
AutomaticImageSegmentationAlgorithmThreshold
- 摘 要 该文提出了一种新的图像阈值分割算法。该算法通过求取最大模糊熵准则下,灰度均值直方图的最佳模糊划分 参数来确定两个模糊集 和 ,图像分割阈值即选取为两个模糊集的交点。该算法用 的模糊熵定义适应度函数, . / 01234 采用改进的遗传算法寻求最佳模糊参数。该文对遗传算法的改进包括,给出了缩短染色体码长的编码方法和性能良好的 改进的单点交叉算子和均匀变异算子。实验结果表明,该算法的分割效果与二维模糊熵算法接近,而计算时间还没有用 到二维模糊熵算法的一半。
Cottonfieldsprayingagriculturerobotsguidancewayrec
- 为研究棉田农药喷洒机器人导航路径识别方法, 以 自然环境下采集的棉田图像为研究背景, 在L ab 色彩空间 进行处理, 把棉株从土壤背景中识别出来。通过最大方差阈 值分割法将图像转化为二值图像, 并经过中值滤波去除噪 声。二值图像垂直方向投影做直方图, 利用波谷位置确定左 右垄分界线。根据左右垄棉株位置平均得到导航离散点, 通 过Hough 变换得到导航路径, 进而得到导航控制参数。利用 坐标系转换关系将图像坐标系中的导航信息转换到世界坐 标系, 从而控制机器人行
xiaobobianhuanzuixiaoercheng
- 小波变换的多尺度图像分割,和图像二值化程序。-Binary Image
erweishang
- 二维最大熵法和二维最小交叉熵法是目前常用的两种阈值分割方法, 但在某些时候因为两种方法获取的阈 值过高或者过低, 使得分割失效。针对此问题, 提出了基于二维最大熵法和二维最小交叉熵法结合的图像分割方法。 首先, 对二维最小交叉熵公式进行转化 然后, 利用多目标规划理论将这两种方法有机结合使得到的阈值既满足二维 最大熵原则, 又满足二维最小交叉熵原则 最后, 利用二维直方图的特点推导出新型递推算法搜索最佳阈值并降低计 算复杂度。-The thresho ld ing method
Double-dimension-OTSU
- 二维OSTU图像自适应阈值分割算法代码,基于c语言编程实现。-OTSU dimensional image adaptive thresholding algorithm code, c-based programming language.
2
- 步态识别论文,对目标检测方法进行了分析,提出了在HSL颜色模型空间中,利用时间域中值滤波算法构建背景模型,采用背景减除法实现人体上肢和下肢关节点的检测,采用闽值分割、形态学滤波和颗粒去除操作对关节点的图像进行二值化处理,为后续相关特征的提取做好了准备。 -Gait identification papers, for target detection methods are analyzed, presented at the HSL color space model, using med
image
- 利用canny算子分割图像,得到修正的跳频信号的二值化时频图-Use canny operator image segmentation, frequency hopping signals corrected binarized time-frequency diagram
visual-saliency
- 提出一种利用视觉显著性对图像进行分割的方法。首先提取图像的底层视觉特征,从局部显著性、全局显著性和稀少性3个方面计算各特征图像中各像素的视觉显著性,得到各特征显著图;对各特征显著图进行综合,生 成最终的综合显著图。然后对综合显著图进行阈值分割,得到二值图像,将二值图像与原始图像叠加,将前景和背景分离,得到图像分割结果-It presents a significant advantage of visual image segmentation method. First, extract
matlab-car
- 车辆自动识别(AVI)是智能交通系统中的一项重要技术。汽车牌照识别是实现车辆自动识别的一种重要的技术手段。而从包含汽车牌照的图像中准确、快速地分割出牌照区域是实现车牌自动识别的一个关键步骤。 本文主要研究了汽车牌照识别中车牌定位问题。车牌定位分为两步进行,首先对车牌进行初定位,对初定位后的车牌图像进行二值化、几何矫正,然后再精确定位车牌区域。同时,在matlab环境下仿真了汽车牌照识别,仿真结果表明,本文算法能很好的识别汽车牌照。 -the Vehicle automatic ident