搜索资源列表
Ch1799
- 小波工具箱的应用基础 395 16.1 一维小波分析的应用 395 16.1.1 小波分解在普通信号分析中的应用 395 16.1.2 小波变换在信号特征检测中的应用 411 16.2 二维小波分析的应用 417 16.2.1 小波分析在图像平滑中的应用 417 16.2.2 小波分析在图像增强中的应用 418 16.2.3 小波分析在图像融合中的应用 420 16.3 小波包分析的应用 422 16.3.1 小波包在信号时频分析中的应用 423 16.
Image_Fusion_Algorithm_with_Wavelet_Transform
- 本文对小波分析在多尺度边缘检测、静止图像压缩和数字水印三个方面应用的方法进行了研究。对于写毕业论文的同学很有帮助
2011
- 基于Sobel算子.该方法将图像划分成预先设定大小的网格,在两个尺度上对图像进行分析,完成图像的边缘检测。首先用Sobel算子求得图像边缘,依据网格内含有边缘像素的数目以及连通情况将不同的网格分别处理。 然后以网格为数据单元,在较大尺度上运用Sobel算子得到图像边缘。最后通过设定数据的优先级和使用形态学的方法合并两次计算边缘的结果。
4
- 提出了一种基于CCD图像的塑料齿轮齿形缺陷检测方法。采用A102FCCD数字摄像头采集塑料齿轮的图像, 经 过IEEE1394数字接口卡传输到计算机。对含有噪声的原始数字图像实施平滑处理、图像分割、轮廓提取及细化等处理, 使图像转变成易于检测的单像素宽边缘信息。检测了齿轮中心孔的圆心, 进而对齿轮齿形缺陷进行检测。理论分析及实验 结果表明该方法检测速度快、精度高, 满足产品在线检测的要求。
ImageEdgeDetectingMethodBasedonFractalFeature
- 运用分形理论描述图像纹理特征,通过分析不同纹理图像及图像边缘处的分形参数,得 到一种新的边缘检测分形特征,从而提出一种基于分形特征的图像边缘检测方法。自适应阈值的 引入,能够实现不同图像的边缘检测。该算法简单迅速,并具有良好的抗噪性能。-The use of fractal theory to describe the image texture features, through the analysis of different texture image and the ima
WaveletTransform
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
waveletanalysis
- 边缘是图像中最重要的信息,是模式识别、图像分 割以及场景分析的重要基础。边缘检测是图像处理领 域一项重要的技术和任务。图像中边缘通常解释为灰 度值有突然改变,像素梯度具有局部极大值。很多经 典的边缘检测算子如:Roberts, Sobel, Prewitt, Frei- Chen和Laplacian等,均以图像局部区域特征与特定 边缘模式匹配为基础,定义数个方向导数模板(一般为 窗口),将图像与模板进行卷积运算实现边缘检测。它 们具有实现简单,速度快速,易于应用
demo1
- 该文件能实现图像的灰度变换,几何变换(平移、镜像等),边缘检测等分析。用MFC做的-The file can achieve image gray-scale transformation, geometric transformations (translation, mirroring, etc.), edge detection analysis. Do with MFC
opencv-doc
- 图像数据操作(内存分配与释放,图像复制、设定和转换) 图像/视频的输入输出(支持文件或摄像头的输入,图像/视频文件的输出) 矩阵/向量数据操作及线性代数运算(矩阵乘积、矩阵方程求解、特征值、奇异值分解) 支持多种动态数据结构(链表、队列、数据集、树、图) 基本图像处理(去噪、边缘检测、角点检测、采样与插值、色彩变换、形态学处理、直方图、图像金字塔结构) 结构分析(连通域/分支、轮廓处理、距离转换、图像矩、模板匹配、霍夫变换、多项式逼近、曲线拟合、椭圆拟合、狄劳尼三角化)
Skeleton3D
- 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法-Image segmentation is the image into a number of specific, region with unique properties and proposed technologies and processes target of inte