搜索资源列表
Ch1799
- 小波工具箱的应用基础 395 16.1 一维小波分析的应用 395 16.1.1 小波分解在普通信号分析中的应用 395 16.1.2 小波变换在信号特征检测中的应用 411 16.2 二维小波分析的应用 417 16.2.1 小波分析在图像平滑中的应用 417 16.2.2 小波分析在图像增强中的应用 418 16.2.3 小波分析在图像融合中的应用 420 16.3 小波包分析的应用 422 16.3.1 小波包在信号时频分析中的应用 423 16.
the1
- 在用小波分解加强图像边缘的基础上,利用修正的形态学边缘检测算子,以减 轻图像边缘检测的模糊性;通过形态结:构元素尺度的调整,得到多尺度下图像边缘的 特征,并综合各尺度下的边缘特征,得到较为理想的图像边缘,实验验证了该算法的可 行性和有效性。
neuralandwavelet
- 对采集到的电压信号进行小波包分解提取特征向量,再进行BP神经网络训练-On the acquisition of the voltage signal to the wavelet packet decomposition to extract feature vector and then BP neural network training
41
- 基于小波包的信号瞬态成分检测与提取方法及其应用,提出基于小波包分解特征表示和瞬态特征重 建方法并应用于汽车变速器齿轮的故障诊断,结果表明基于小波包分解的信号特征表示方法能有效检测信号中瞬 态成分的存在,瞬态成分的重建结果有效地表示了齿轮的故障状态。 -The detection and extraction of signal transients through wavelet packets decomposition are studied and signal trans
EMD-When-frequency-analysis
- 研究了经验模态分解与希尔伯特变换相结合的提取信号瞬时特征的EMD/HS法,并对其性能进行了分析-EMD/HS method to study the transient characteristics of the empirical mode decomposition and Hilbert transform combining the extracted signal, and its performance is analyzed
target-detection-algorithm-
- 为克服传统目标识别方法在处理空间特征分布极为复杂的数据时的缺点,提出1 种基于决策树的多特征检测算法,并将其应用到基于视频的海上搜救目标检测中. 该算法首先提取图像中的颜色、亮度等信息,通过计算各特征的信息增益建立决策树,将搜救目标检测问题分解成3 层决策树分类问题. 实验表明,该算法能够提高多特征目标检测的效率,在救生艇、筏等海上搜救目标检测的应用中取得较好的结果.-Characteristics to overcome the traditional target recognition m
rev3
- 海豚声纳信号的脉冲分解及特征分析.提出一种海豚声纳目标探测脉冲串信号的脉冲分解方法,在此基础上对海豚声纳脉冲信号的特征进行了分析,其中包括脉冲宽度、脉冲间隔以及脉冲的时间分辨率和频率分辨率,并采用耳蜗滤波对海豚声纳脉冲串信号的时频特征进行了分析。分析结果表明,探测目标的过程中,根据目标距离的不同,海豚会自适应调节脉冲信号的发射频率和信号形式。 -Dolphin sonar signal pulse decomposition and characteristics of proposed bur
Development-of-Time-frequency-atom
- 时频原子算法建立时频原子库,从而用多个时频原子分解信号的特征-Time-frequency atoms algorithms to establish frequency atom library with multiple frequency atom decomposition signal characteristics
MatchingPursuit
- Matching Pursuit 算法是信号分解的一种具体实现方法。但其本质上则是一种估计 信号模型参数的方法,因而可直接用于信号检测及参量估计。本文以谐波信号特征参量的估计为例,介绍了其具体实现方法。-Matching Pursuit algorithm is a specific method of signal decomposition. But by its very nature is an estimated signal model parameters, and thus
WignerVille2014
- 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extractio
Marx20110509
- 本文将小波图像分解和信息熵特征提取相结合,提出一种新的掌纹特征提取算法。该算法首先对掌纹灰度图像进行二维小波分解,再利用多分辨信息熵分别计算不同尺度下的能谱熵作为特征向量,从而实现掌纹特征提取。该算法不但避免了图像增强和纹理细化等预处理过程,而且运用多分辨信息熵的自适应计算方法来调节分解级数,使得到的特征向量长度远小于传统算法。-In this paper, wavelet image decomposition and information entropy feature extractio
mutual-information
- 红外和可见光的匹配跟踪在军事、遥感等领域有着广泛的应用。针对灰度和图像特征存在比较大差异的红外和可见光图像,本文采用了最大互信息算法,结合形态学梯度和小波分解。互信息算法优点在于不需要对多模图像灰度间的关系做任何假设,不足之处在于它对图像空间信息的忽略而且计算时间较长。本文互信息结合多结构元的形态学梯度检测的图像边缘,可以使得图像匹配精度提高,还能改善局部极值的问题,再利用小波分解对图像进行压缩降低分辨率,可以减少互信息计算量。最后的实验数据表明在配准过程中互信息的计算速度得到了优化,匹配精度得
0
- 利用主元分析和奇异值分解进行人脸特征提取的方法(并详细阐述其在PQRSQT中的实现过程(包括读取图像文件U计算均值脸U求特征值和特征向量(计算人脸特征参数-实现过程均给出了MATLAB代码-Using principal component analysis and singular value decomposition facial feature extraction method (and detail its in the PQRSQT in the implementation pr
dimensionalspectral
- 小波变换是一种线性运算 , 它对信号进行不同尺度的分解 , 可有效地应用于如 信噪分离 , 提高时频两域的分辩率等 。本文讨论小波变换用于心电 Q RS 波形中细微特征 ( 即高频成份特征 ) 提取的方法.-Wavelet transform is a linear operation, its signal is decomposed at different scales, can be effectively used as the signal to noise separat
opencv-doc
- 图像数据操作(内存分配与释放,图像复制、设定和转换) 图像/视频的输入输出(支持文件或摄像头的输入,图像/视频文件的输出) 矩阵/向量数据操作及线性代数运算(矩阵乘积、矩阵方程求解、特征值、奇异值分解) 支持多种动态数据结构(链表、队列、数据集、树、图) 基本图像处理(去噪、边缘检测、角点检测、采样与插值、色彩变换、形态学处理、直方图、图像金字塔结构) 结构分析(连通域/分支、轮廓处理、距离转换、图像矩、模板匹配、霍夫变换、多项式逼近、曲线拟合、椭圆拟合、狄劳尼三角化)
Parameter-optimization
- 针对滚动轴承早期故障特征提取困难的问题,提出一种基于参数优化变分模态分解的轴承早期故障诊断方法。首先利用粒子群优化算法对变分模态分解算法的最佳影响参数组合进行搜索,搜索结束后根据所得结果设定变分模态分解算法的惩罚参数和分量个数,并利用参数优化变分模态分解算法对故障信号进行处理。-Aiming at the difficult problem of early fault feature extraction of rolling bearing, an early fault diagnosis
jaolingpou
- Pisarenko谐波分解算法,包含特征值与特征向量的提取、训练样本以及最后的识别,基于多相结构的信道化接收机。- Pisarenko harmonic decomposition algorithm, Contains the eigenvalue and eigenvector extraction, the training sample, and the final recognition, Channelized receiver based on multi-phase struct