搜索资源列表
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
23445455
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
466676
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
5346363636
- :针对粒子群算法进行多极点函数优化时 存在的局部极小点和搜寻效率低的问题,引入了小 生境的思想到粒子群算法中,以粒子的最好位置为 中心,粒子的最好的个体解对应的适应值为半径建 立圆形小生境。stretching 技术,其次对子群体采用解散策略,即当在子群体中找到一个极值点后把子群体解散回归主群体,最 后设置子群体创建时的半径阈值,避免子群体半径过大。该算法解决了标准的NichePS0算法在处理 多峰函数时,极值点的个数依赖于子群体个数及极值点容易出现重复、遗漏
improved-particle-bionics
- 针对标准粒子群算法收敛速度慢和易陷入局部最优的局限性,提出了一种基于仿生学改进的粒子群算法。-For standard PSO slow convergence and local optimum limitations proposed based on improved particle swarm optimization bionics.